Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T21:33:06.643Z Has data issue: false hasContentIssue false

Gas-source molecular beam epitaxy of monocrystalline β–SiC on vicinal α(6H)–SiC

Published online by Cambridge University Press:  03 March 2011

L.B. Rowland
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
R.S. Kern
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
S. Tanaka
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
Robert F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, North Carolina 27695-7907
Get access

Abstract

Single-crystal epitaxial films of cubic β(3C)–SiC(111) have been deposited on hexagonal α(6H)–SiC(0001) substrates oriented 3–4° toward [1120] at 1050–1250 °C via gas-source molecular beam epitaxy using disilane (Si2H6) and ethylene (C2H4). High-resolution transmission electron microscopy revealed that the nucleation and growth of the β(3C)–SiC regions occurred primarily on terraces between closely spaced steps because of reduced rates of surface migration at the low growth temperatures. Double positioning boundaries were observed at the intersections of these regions.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Davis, R. F., Palmour, J. W., and Edmond, J. A., Diamond and Related Materials 1, 109 (1992).CrossRefGoogle Scholar
2Kong, H. S., Glass, J. T., and Davis, R. F., Appl. Phys. Lett. 49, 1074 (1986).CrossRefGoogle Scholar
3Shibahara, K., Kuroda, N., Nishino, S., and Matsunami, H., Jpn. J. Appl. Phys. 26, L1815 (1987).CrossRefGoogle Scholar
4Kong, H. S., Jiang, B. L., Glass, J. T., Rozgonyi, G. A., and More, K. L., J. Appl. Phys. 63, 2645 (1988).CrossRefGoogle Scholar
5Kong, H. S., Glass, J. T., and Davis, R. F., J. Appl. Phys. 64, 2672 (1988).CrossRefGoogle Scholar
6Kuroda, N., Shibahara, K., Yoo, W., Nishino, S., and Matsunami, H., in Extended Abstracts 19th Conf. on Solid State Devices and Materials (Business Center for Academic Societies, Tokyo, 1987), p. 227.Google Scholar
7Kaneda, S., Sakamoto, Y., Mihara, T., and Tanaka, T., J. Cryst. Growth 81, 536 (1987).CrossRefGoogle Scholar
8Yoshinobu, T., Mitsui, H., Izumikawa, I., Fuyuki, T., and Matsunami, H., Appl. Phys. Lett. 60, 824 (1992).CrossRefGoogle Scholar
9Rowland, L. B., Kern, R. S., Tanaka, S., and Davis, R. F., in Proc. 4th Int. Conf. Amorphous and Crystalline Silicon Carbide and Related Materials, edited by Yang, C. Y., Rahman, M. M., and Harris, G. L. (Springer-Verlag, Berlin, 1992), p. 84.Google Scholar
10Bravman, J. C. and Sinclair, R., J. Electron Microsc. Technol. 1, 53 (1987).CrossRefGoogle Scholar
11Heine, V., Cheng, C., and Needs, R. J., J. Am. Ceram. Soc. 74, 2630 (1991).CrossRefGoogle Scholar
12Powell, J. A., Larkin, D. J., Matus, L. G., Choyke, W. J., Bradshaw, J. L., Henderson, L., Yoganathan, M., Yang, J., and Pirouz, P., Appl. Phys. Lett. 56, 1353 (1990).CrossRefGoogle Scholar
13Wang, Y. C., M. S. Thesis, North Carolina State University, 1991.Google Scholar