Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T23:45:22.176Z Has data issue: false hasContentIssue false

Further observations on the effects of nonhydrostatic compression on the FR1AO polymorphic phase transformation in niobiumdoped, lead-zirconate-titanate ceramic

Published online by Cambridge University Press:  03 March 2011

David H. Zeuch
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185-0751
Stephen T. Montgomery
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185-0751
Jeffrey D. Keck
Affiliation:
Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185-0751
Get access

Abstract

We recently performed a series of experiments on Nb-doped lead-zirconate-titanate ceramic to investigate the influence of constant shear stresses on the displacive, first-order rhombohedral/ferroelectric → orthorhombic/antiferroelectric polymorphic transformation. In a previous paper and report we demonstrated that increasing shear stresses lowers the mean stress and confining pressure at which the transformation occurs, but we did not identify a criterion by which the transformation could be predicted to take place under nonhydrostatic stress. In this paper we use the dielectric anomaly which accompanies the transformation as an indicator of onset of the transition, and correct for the effects of high-pressure-seal friction on measurement of the maximum compressive stress applied to the test specimens during deviatoric loading. We show that a convincing case can be made that the transformation occurs when the maximum compressive stress equals the hydrostatic pressure at which the transformation would otherwise occur.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zeuch, D. H., Montgomery, S. T., and Keck, J. D., J. Mater. Res. 7, 3314 (1992).CrossRefGoogle Scholar
2Fritz, I. J. and Keck, J. D., J. Phys. Chem. Solids 39, 1163 (1978).CrossRefGoogle Scholar
3Zeuch, D. H., Montgomery, S. T., Keck, J. D., and Zimmerer, D. J., Hydrostatic and Triaxial Compression Experiments on Unpoled PZT 95/5 2Nb Ceramic: The Effects of Shear Stress on the FR1 → Ao Polymorphic Transformation (Report No. SAND92-0484, Sandia National Laboratories, Albuquerque, NM, 1992. Available from National Technical Information Service, U.S. Dept. of Commerce, 5285 Port Royal Road, Springfield, VA 22161).Google Scholar
4Samara, G. A., Phys. Rev. B 1, 3777 (1970).CrossRefGoogle Scholar
5Larche, F. C., Ann. Rev. Mater. Sci. 20, 83 (1990).CrossRefGoogle Scholar
6Haun, M. J., Furman, E., Jang, S. J., and Cross, L. E., Ferroelectrics 99, 13 (1989).CrossRefGoogle Scholar
7Haun, M. J., Furman, E., McKinstry, H. A., and Cross, L. E., Ferroelectrics 99, 27 (1989).CrossRefGoogle Scholar
8Haun, M. J., Zhuang, Z. Q., Furman, E., Jang, S. J., and Cross, L. E., Ferroelectrics 99, 45 (1989).CrossRefGoogle Scholar
9Haun, M. J., Furman, E., Halemane, T. R., and Cross, L. E., Ferroelectrics 99, 55 (1989).CrossRefGoogle Scholar
10Haun, M. J., Furman, E., Jang, S. J., and Cross, L. E., Ferroelectrics 99, 63 (1989).CrossRefGoogle Scholar
11Dungan, R. H. and Storz, L. J., J. Am. Ceram. Soc. 68, 530 (1985).CrossRefGoogle Scholar
12Fritz, I. J., J. Appl. Phys. 49, 4922 (1978).CrossRefGoogle Scholar
13Fritz, I. J., J. Appl. Phys. 50, 5265 (1979).CrossRefGoogle Scholar
14Berlincourt, D., Krueger, H. H. A., and Jaffe, B., J. Phys. Chem. Solids 25, 659 (1964).CrossRefGoogle Scholar
15Kirby, S. H., Durham, W. B., and Stern, L. A., Science 252, 214 (1991).CrossRefGoogle Scholar