Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T21:18:15.688Z Has data issue: false hasContentIssue false

Functionally graded SrTiO3–BaTiO3 thin films prepared by the hydrothermal-electrochemical method under flowing solution

Published online by Cambridge University Press:  31 January 2011

Masahiro Yoshimura
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Wojciech Suchanek
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Tomoaki Watanabe
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Bungo Sakurai
Affiliation:
Center for Materials Design, Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
Masanori Abe
Affiliation:
Faculty of Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan
Get access

Abstract

BaTiO3, SrTiO3, and BaxSr1−x TiO3 thin films, as well as multilayers in the SrTiO3-BaTiO3 system, have been prepared on Ti substrates in newly constructed flow-system equipment by the hydrothermal-electrochemical method. The synthesis parameters (temperature of 120–200 °C, flow rate of 1–50 cm3/min) allow fabrication of dense, single-phase films with different morphology by controlling nucleation and/or growth rates. The flow system enables also an easy fabrication of SrTiO3/BaTiO3 and BaTiO3/SrTiO3 multilayers with variable chemical composition and microstructure across the film thickness. The multilayers can be prepared in only one experiment by simply changing the kind of flowing solution and/or adjusting the processing conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Jones, R. E. Jr., Zurcher, P., Chu, P., Taylor, D. J., Lii, Y. T., Jiang, B., Maniar, P. D., and Gillespie, S. J., Microelectronic Eng. 29, 3 (1995).CrossRefGoogle Scholar
2.Suzuki, M., J. Ceram. Soc. Jpn. 103, 1099 (1995), in Japanese.CrossRefGoogle Scholar
3.Song, M-H., Lee, Y-H., Hahn, T-S., and Oh, M-H., J. Appl. Phys. 79, 3744 (1996).CrossRefGoogle Scholar
4.Jia, Q. X., Chang, L. H., and Anderson, W. A., Thin Solid Films 259, 264 (1995).CrossRefGoogle Scholar
5.Shi, Z. Q., Jia, Q. X., and Anderson, W. A., J. Electron. Mater. 20, 939 (1991).CrossRefGoogle Scholar
6.Hayashi, T. and Tanaka, T., Jpn. J. Appl. Phys. 34, 5100 (1995).CrossRefGoogle Scholar
7.Varadan, V. K., Varadan, V. V., Selmi, F., Ounaies, Z., and Jose, K. A., Proc. SPIE-Int. Soc. Opt. Eng. 2189, 433 (1994).Google Scholar
8.Yoshimura, M., Yoo, S-E., Hayashi, M., and Ishizawa, N., Jpn. J. Appl. Phys. 28, L2007 (1989).CrossRefGoogle Scholar
9.Kajiyoshi, K. and Yoshimura, M., Eur. J. Solid State Inorg. Chem. 33, 623 (1996).Google Scholar
10.Yoshimura, M. and Suchanek, W., Solid State Ionics 98, 197 (1997).CrossRefGoogle Scholar
11.Porter, J. M., Pohl, D. C., and Rimstid, J. D., in Hydrothermal Experimental Techniques, edited by Ulmer, G. C. and Barnes, H. L. (John Wiley & Sons, New York, 1987), p. 240.Google Scholar
12.Abe, M., Tamaura, Y., Goto, Y., Kitamura, N., and Gomi, M., J. Appl. Phys. 61, 3211 (1987).CrossRefGoogle Scholar
13.Lecka, M. and Riman, R. E., Ferroelectrics 151, 159 (1994).CrossRefGoogle Scholar
14.Seewald, J. S. and Seyfried, W. E. Jr., Geochimica et Cosmochimica Acta 55, 659 (1991).CrossRefGoogle Scholar
15.Slamovich, E. B. and Aksay, I. A., J. Am. Ceram. Soc. 79, 239 (1996).CrossRefGoogle Scholar
16.Elwell, D. and Scheel, H. J., Crystal Growth from High-Temperature Solutions (Academic Press, New York, 1975).Google Scholar
17.Yoshimura, M., Suchanek, W., Sakurai, B., and Watanabe, T., unpublished.Google Scholar