Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T10:09:16.578Z Has data issue: false hasContentIssue false

Functionalization of single-layer TaS2 and formation of ultrathin Janus structures

Published online by Cambridge University Press:  08 April 2020

Zeynep Kahraman*
Affiliation:
Department of Photonics, Izmir Institute of Technology, Izmir 35430, Turkey
Mehmet Yagmurcukardes
Affiliation:
Department of Physics, University of Antwerp, Antwerpen B-2020, Belgium
Hasan Sahin*
Affiliation:
Department of Photonics, Izmir Institute of Technology, Izmir 35430, Turkey
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Ab initio calculations are performed to investigate the structural, vibrational, electronic, and piezoelectric properties of functionalized single layers of TaS2. We find that single-layer TaS2 is a suitable host material for functionalization via fluorination and hydrogenation. The one-side fluorinated (FTaS2) and hydrogenated (HTaS2) single layers display indirect gap semiconducting behavior in contrast to bare metallic TaS2. On the other hand, it is shown that as both surfaces of TaS2 are saturated anti-symmetrically, the formed Janus structure is a dynamically stable metallic single layer. In addition, it is revealed that out-of-plane piezoelectricity is created in all anti-symmetric structures. Furthermore, the Janus-type single-layer has the highest specific heat capacity to which longitudinal and transverse acoustical phonon modes have contribution at low temperatures. Our findings indicate that single-layer TaS2 is suitable for functionalization via H and F atoms that the formed, anti-symmetric structures display distinctive electronic, vibrational, and piezoelectric properties.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This paper has been selected as an Invited Feature Paper.

References

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.: Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666 (2004).CrossRefGoogle ScholarPubMed
Joshi, S., Bischoff, F., Koitz, R., Ecija, D., Seufert, K., Seitsonen, A.P., Hutter, J., Diller, K., Urgel, J.I., Sachdev, H., Barth, J.V., and Auwärter, W.: Control of Molecular Organization and Energy Level Alignment by an Electronically Nanopatterned Boron Nitride Template. ACS Nano 8, 430 (2014).CrossRefGoogle ScholarPubMed
Kim, K.K., Hsu, A., Jia, X., Kim, S.M., Shi, Y., Hofmann, M., Nezich, D., Rodriguez-Nieva, J.F., Dresselhaus, M., Palacios, T., and Kong, J.: Synthesis of Monolayer Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition. Nano Lett. 12, 161 (2012).CrossRefGoogle ScholarPubMed
Vogt, P., De Padova, P., Quaresima, P., Avila, J., Frantzeskakis, E., Asensio, M.C., Resta, A., Ealet, B., and Lay, G.L.: Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys. Rev. Lett. 108, 155501 (2012).CrossRefGoogle ScholarPubMed
Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H., and Ciraci, S.: Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Phys. Rev. Lett. 102, 236804 (2009).CrossRefGoogle ScholarPubMed
Zhuang, H.L. and Hennig, R.G.: Electronic structures of single-layer boron pnictides. Appl. Phys. Lett. 101, 153109 (2012).CrossRefGoogle Scholar
Geim, A.K. and Grigorieva, I.V.: Van der Waals heterostructures. Nature 499, 419425 (2013).10.1038/nature12385CrossRefGoogle ScholarPubMed
Late, D.J., Liu, B., Luo, J., Yan, A., Matte, H.S.S., Grayson, M., Rao, C.N.R., and Dravid, V.P.: GaS and GaSe Ultrathin Layer Transistors. Adv. Mater. 24, 3549 (2012).CrossRefGoogle ScholarPubMed
Jariwala, D., Sangwan, V.K., Lauhon, L.J., Marks, T.J., and Hersam, M.C.: Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 8, 1102 (2014).CrossRefGoogle ScholarPubMed
Tan, C. and Zhang, H.: Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713 (2015).CrossRefGoogle ScholarPubMed
Qian, X., Liu, J., Fu, L., and Li, J.: Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344 (2014).CrossRefGoogle ScholarPubMed
Han, S.W., Kwon, H., Kim, S.K., Ryu, S., Yun, W.S., Kim, D.H., Hwang, J.H., Kang, J.S., Baik, J., Shin, H.J., and Hong, S.C.: Band-gap transition induced by interlayer van der Waals interaction in MoS2. Phys. Rev. B 84, 045409 (2011).10.1103/PhysRevB.84.045409CrossRefGoogle Scholar
Ellis, J.K., Lucero, M.J., and Scuseria, G.E.: The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 99, 261908 (2011).CrossRefGoogle Scholar
Qiu, D.Y., da Jornada, F.H., and Louie, S.G.: Optical Spectrum of: Many-Body Effects and Diversity of Exciton States. Phys. Rev. Lett. 111, 216805 (2013).CrossRefGoogle ScholarPubMed
Chernikov, A., Berkelbach, T.C., Hill, H.M., Rigosi, A., Li, Y., Aslan, O.B., Reichman, D.R., Hybertsen, M.S., and Heinz, T.F.: Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).CrossRefGoogle Scholar
He, K., Kumar, N., Zhao, L., Wang, Z., Mak, K.F., Zhao, H. and Shan, J.: Tightly bound excitons in monolayer Wse2. Phys. Rev. Lett. 113, 026803 (2014).CrossRefGoogle Scholar
Ramasubramaniam, A.: Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).CrossRefGoogle Scholar
Bernardi, M., Palummo, M., and Grossman, J.C.: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664 (2013).CrossRefGoogle ScholarPubMed
Gutiérrez, H.R., Perea-López, N., Elías, A.L., Berkdemir, A., Wang, B., Lv, R., Lòpez-Urías, F., Crespi, V.H., Terrones, H., and Terrones, M.: Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. Nano Lett. 13, 3447 (2013).CrossRefGoogle ScholarPubMed
Kandemir, A., Akbali, B., Kahraman, Z., Badalov, S.V., Ozcan, M., Iyikanat, F., and Sahin, H.: Structural, electronic and phononic properties of PtSe22: from monolayer to bulk. Semicond. Sci. Technol. 33, 085002 (2018).CrossRefGoogle Scholar
Iyikanat, F., Sahin, H., Senger, R.T., and Peeters, F.M.: Structural Transitions in Monolayer MoS2 by Lithium Adsorption. J. Phys. Chem. C 119, 1070910715 (2015).CrossRefGoogle Scholar
Wu, K., Torun, E., Sahin, H., Chen, B., Fan, X., Pant, A., Wright, D.P., Aoki, T., Peeters, F.M., Soignard, E., and Tongay, S.: Unusual lattice vibration characteristics in whiskers of the pseudo-one-dimensional titanium trisulfide TiS3. Nat. Commun. 7, 12952 (2016).10.1038/ncomms12952CrossRefGoogle ScholarPubMed
Geremew, A.K., Rumyantsev, S., Kargar, F., Debnath, B., Nosek, A., Bloodgood, M.A., Bockrath, M., Salguero, T.T., Lake, R.K., and Balandin, A.A.: Bias-Voltage Driven Switching of the Charge-Density-Wave and Normal Metallic Phases in 1TTaS2 Thin-Film Devices. ACS Nano 13, 72317240 (2019).CrossRefGoogle ScholarPubMed
Hinsche, N.F. and Tygesen, S.K.: Electronphonon interaction and transport properties of metallic bulk and monolayer transition metal dichalcogenide TaS2. 2D Mater. 5, 015009 (1972).CrossRefGoogle Scholar
Yu, Y., Yang, F., Lu, X.F., Yan, Y.J., Cho, Y-H., Ma, L., Niu, X., Kim, S., Son, Y-W., Feng, D., Li, D.S., Cheong, S-W., Chen, X.H., and Zhang, Y.: Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270276 (2015).CrossRefGoogle ScholarPubMed
Shi, J., Wang, X., Zhang, S., Xiao, L., Huan, Y., Gong, Y., Zhang, Z., Li, Y., Zhou, X., Hong, M., Fang, Q., Zhang, Q., Liu, X., Gu, L., Liu, Z., and Zhang, Y.: Two-dimensional metallic tantalum disulfide as ahydrogen evolution catalyst. Nat. Commun. 8, 958 (2017).CrossRefGoogle ScholarPubMed
Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S., Katsnelson, M., Cheng, H-M., Strupinski, W., Bulusheva, L.G., Okotrub, A.V., Grigorieva, I.V., Grigorenko, A.N., Novoselov, K.S., and Geim, A.K.: Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 6, 28772884 (2010).CrossRefGoogle Scholar
Sahin, H., Topsakal, M., and Ciraci, S.: Structures of fluorinated graphene and their signatures. Phys. Rev. B 83, 115432 (2011).CrossRefGoogle Scholar
Yagmurcukardes, M.: Formation of a thin monolayer via fluorination of InSe. Phys. Rev. B 100, 024108 (2019).CrossRefGoogle Scholar
Sreepal, V., Yagmurcukardes, M., Vasu, S.K., Kelly, D.J., Taylor, S.F.R., Kravets, V.G., Kudrynskyi, Z., Kovalyuk, Z.D., Patanè, A., Grigorenko, A.N., Haigh, S.J., Hardacre, C., Eaves, L., Sahin, H., Geim, A.K., Peeters, F.M., and Nair, R.R.: Two-Dimensional Covalent Crystals by Chemical Conversion of Thin van der Waals Materials. 19, 64756481 (2019).Google Scholar
Wang, J., Chen, S., Quan, X., and Yu, H.: Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation. Chemosphere 190, 135143 (2018).CrossRefGoogle ScholarPubMed
Zhao, J., Cabrera, C.R., Xia, Z., and Chen, Z.: Singlesided fluorine functionalized graphene: A metalfree electrocatalyst with high efficiency for oxygen reduction reaction. Carbon 104, 5663 (2016).CrossRefGoogle Scholar
Li, Y., Zhu, Z., Yu, J., and Ding, B.: Carbon Nanotubes Enhanced Fluorinated Polyurethane Macroporous Membranes for Waterproof and Breathable Application. ACS Appl. Mater. Interfaces 7, 1353813546 (2015).CrossRefGoogle ScholarPubMed
Yagmurcukardes, M., Bacaksiz, C., Senger, R.T., and Sahin, H.: Hydrogen-induced structural transition in single-layer ReS2. 2D Mater. 4, 035013 (2017).CrossRefGoogle Scholar
Sofo, J.O., Caudhari, A.S., and Barber, G.D.: Graphane: A two-dimensional hydrocarbon. Phys. Rev. B 75, 153401 (2007).CrossRefGoogle Scholar
Fuhrer, M.S., Lau, C.N., and MacDonald, A.H.: Graphene: Materially Better Carbon. MRS Bull. 35, 289295 (2010).CrossRefGoogle Scholar
Wehling, T.O., Novoselov, K.S., Morozov, S.V., Vdovin, E.E., Katsnelson, M.I., Geim, A.K., and Lichtenstein, A.I.: Molecular Doping of Graphene. Nano Lett. 8, 173177 (2008).CrossRefGoogle ScholarPubMed
Robinson, J.T., Burgess, J.S., Junkermeier, C.E., Badescu, S.C., Reinecke, T.L., Perkins, F.K., Zalalutdniov, M.K., Baldwin, J.W., Culbertson, J.C., Sheehan, P.E., and Snow, E.S.: Properties of Fluorinated Graphene Films. Nano Lett. 10, 30013005 (2010).CrossRefGoogle ScholarPubMed
Lu, A-Y., Zhu, H., Xiao, J., Chuu, C-P., Han, Y., Chiu, M-H., Cheng, C-C., Yang, C-W., Wei, K-H., Yang, Y., Wang, Y., Sokaras, D., Nordlund, D., Yang, P., Muller, D.A., Chou, M-Y., Zhang, X., and Li, L-J.: Janus monolayers of transition metal dichalcogenides. Nanotechnol 12, 744 (2017).Google ScholarPubMed
Kandemir, A. and Sahin, H.: Janus single-layers of In2SSe: A first-principles study. Phys. Rev. B 97, 155410 (2018).CrossRefGoogle Scholar
Zhang, J., Jia, S., Kholmanov, I., Dong, L., Er, D., Chen, W., Guo, H., Jin, Z., Shenoy, V.B., Shi, L., and Lou, J.: Janus Monolayer Transition-Metal Dichalcogenides. ACS Nano 11, 81928198 (2017).CrossRefGoogle ScholarPubMed
Cheng, Y.C., Zhu, Z.Y., Tahir, M., and Schwingenschlögl, U.: Spin-orbit-induced spin splittings in polar transition metal dichalcogenide monolayers. Europhys. Lett. 102, 57001 (2013).CrossRefGoogle Scholar
Dong, L., Lou, J., and Shenoy, V.B.: Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides. ACS Nano 11, 82428248 (2017).CrossRefGoogle ScholarPubMed
Kahraman, Z., Kandemir, A., Yagmurcukardes, M., and Sahin, H.: Single-Layer Janus-Type Platinum Dichalcogenides and Their Heterostructures. J. Phys. Chem. C 123, 45494557 (2019).CrossRefGoogle Scholar
Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (2016).CrossRefGoogle Scholar
Kresse, G. and Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).CrossRefGoogle ScholarPubMed
Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).CrossRefGoogle ScholarPubMed
Grimme, S.: Semiempirical GGAtype density functional constructed with a longrange dispersion correction. J. Comput. Chem. 27, 17871799 (2006).CrossRefGoogle Scholar
Henkelman, G., Arnaldsson, A., and Jonsson, H.A.: A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354360 (2006).CrossRefGoogle Scholar
Togo, A., Oba, F., and Tanaka, I.: First-principles calculations of the ferroelastic transition between rutile-type and CaCl2 -type SiO2 at high pressures. Phys. Rev. B 78, 134106 (2008).10.1103/PhysRevB.78.134106CrossRefGoogle Scholar
Ataca, C. and Ciraci, S.: Functionalization of Single-Layer MoS2 Honeycomb Structures. J. Phys. Chem. C 115, 13303 (2011).CrossRefGoogle Scholar
Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., and Novoselov, K.S.: Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane. Science 323, 610613 (2009).CrossRefGoogle ScholarPubMed
Iyikanat, F., Kandemir, A., Ozaydn, H.D., Senger, R.T., and Sahin, H.: Hydrogenation-driven phase transition in single-layer TiSe2. Nanotechnology 28, 495709 (2017).CrossRefGoogle ScholarPubMed
Yagmurcukardes, M., Senger, R.T., Peters, F.M., and Sahin, H.: Mechanical properties of monolayer GaS and GaSe crystals. Phys. Rev. B 94, 245407 (2016).CrossRefGoogle Scholar
Yagmurcukardes, M., Sevik, C., and Peters, F.M.: Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: A first-principles study. Phys. Rev. B 100, 045415 (2019).CrossRefGoogle Scholar
Sahin, H.: Structural and phononic characteristics of nitrogenated holey graphene. Phys. Rev. B 92, 085421 (2015).CrossRefGoogle Scholar