Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-21T12:50:33.309Z Has data issue: false hasContentIssue false

Functionalization of open-celled foams by homogeneous slurry based coatings

Published online by Cambridge University Press:  05 June 2013

Daniela Boettge*
Affiliation:
Nonoxide Ceramics, Fraunhofer Institute for Ceramic Technologies and Systems IKTS Dresden, Winterbergstrasse 28, D-01277 Dresden, Germany
Gisela Standke
Affiliation:
Nonoxide Ceramics, Fraunhofer Institute for Ceramic Technologies and Systems IKTS Dresden, Winterbergstrasse 28, D-01277 Dresden, Germany
Alexander Fuessel
Affiliation:
Nonoxide Ceramics, Fraunhofer Institute for Ceramic Technologies and Systems IKTS Dresden, Winterbergstrasse 28, D-01277 Dresden, Germany
Jörg Adler
Affiliation:
Nonoxide Ceramics, Fraunhofer Institute for Ceramic Technologies and Systems IKTS Dresden, Winterbergstrasse 28, D-01277 Dresden, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A new technology to coat open-celled foams homogeneously by using a vertical centrifuge and shear-thinning slurries is presented. The technology is exemplified by a complex multilayer-coated foam for catalytic applications (Fig. 3). Furthermore, a new calculation model for the estimation of coating thickness and for quality assessment is introduced and proved by comparing the calculated and experimental data. Based on these results, various material combinations are shown, e.g., layers made of rough particles, zeolites, activated carbon, γ-Al2O3, perovskites, mullite, and yttria–alumina–garnet on SiC–, Al2O3–, or cordierite foams. Theses “functionalized foams” can be used for a wide variety of practical applications, e.g., as adsorbents and catalysts in environmental engineering, as preforms for metal matrix composites, and for special purpose applications that require corrosion and oxidation resistance.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, J. and Standke, G.: Offenzellige Schaumkeramik, Part 1/2, Keram. Z. 55(9/10), 694–703/786–792 (2003). [in German].Google Scholar
Schwartzwalder, K. and Somers, A.V.: Method of making porous ceramic articles. U.S. Patent No. 3090094, 1963.Google Scholar
Fino, D., Russo, N., Saracco, G., and Specchia, V.: Multifunctional filter for treatment of the flue gases from municipal waste incinerators. Ind. Eng. Chem. Res. 44, 95429548 (2005).CrossRefGoogle Scholar
Giani, L., Cristiani, C., Groppi, G., and Tronconi, E.: Washcoating method for Pd/[gamma]-Al2O3 deposition on metallic foams. Appl. Catal., B 62, 121131 (2006).CrossRefGoogle Scholar
Van Setten, B.A.A., Bremmer, J., Jelles, S.J., Makkee, M., and Moulijn, J.A.: Ceramic foam as a potential molten salt oxidation catalyst support in the removal of soot from diesel exhaust gas. Catal. Today 53, 613621 (1999).CrossRefGoogle Scholar
Taylor, K.C.: Ceramic foam filtration: No longer a band-aid. Mod. Cast. 94, 2528 (2004).Google Scholar
Anonym author: Clean metal, the ‘Holy Grail' for all foundries. Foundry J. 180, 283285 (2006).Google Scholar
Anonym author: Ceramic foam. J. Interceram. 38, 36 (1989).Google Scholar
Zhang, K. and Zhu, J.: Filtration technology - an effective way to improve quality of heavy iron castings. In 69th World Foundry Congress, Proceedings, Hangzhou, CN, Oct 16–20, 2010.Google Scholar
Aslanowicz, M., Oscilowski, L., Pysz, S., Stachanczyk, J., and Wieliczko, P.: Application of the ceramic filters in the gating systems for cast steel. Przeglad Odlewnictwa 55, 652659 (2005).Google Scholar
Aneziris, C.G., Dudczig, S., Emmel, M., Berek, H., Schmidt, G., and Hubalkova, J.: Reactive filters for steel melt filtration. Adv. Eng. Mater. 15, 4659 (2013).CrossRefGoogle Scholar
Cellular Ceramics: Structure, Manufacturing, Properties and Applications, edited by Scheffler, M. and Colombo, P. (Wiley-VCH: Weinheim, Germany, 2005).CrossRefGoogle Scholar
Bucharsky, E.C., Schell, K.G., Oberacker, R., and Hoffmann, M.J.: Preparation of transparent glass sponges via replica method using high-purity silica. J. Am. Soc. 93, 111141 (2010).Google Scholar
Adler, J. and Standke, G.: Open-celled silicon carbide foams made by replication method – manufacturing, properties and application of SSiC and SiSiC foams. In Proceedings Intern. Conf. on porous ceramic materials, PCM 2005, 20–21 October at the Oud Sint-Jan, Bruges, CD-ROM, Flemish Institute for Technological Research, 2005. 6 pages.Google Scholar
Ortona, A., Gianella, S., and Gaia, D.: SiC foams for high temperature applications. In Advances in Bioceramics and Porous Ceramics IV: Ceramic Engineering and Science Proceedings, Vol. 32, John Wiley & Sons, Inc., 2011; pp. 153161.CrossRefGoogle Scholar
Adler, J., Standke, G., Jahn, M., and Marschallek, F.: Cellular ceramics made of silicon carbide ceramics for burner technology. Ceram. Eng. Sci. Proc. 29, 271286 (2009).Google Scholar
Paserin, V., Marcuson, S., Shu, J., and Wilkinson, D.S.: CVD technique for Inco nickel foam production. Adv. Eng. Mater. 6, 454459 (2004).CrossRefGoogle Scholar
Adler, J., Kümmel, K., Quadbeck, P., Standke, G., and Stephani, G.: Synthesis of open-celled metal foams by replication technique. In: Proceedings of the International Symposium on Cellular Metals for Structural and Functional Applications, CELLMET 2005; Kieback, B. and Stephani, G., ed., Fraunhofer IRB Stuttgart, 2005; pp. 199205.Google Scholar
Zardiackas, L.D., Parsell, D.E., Dillon, L.D., Mitchell, D.W., Nunnery, L.A., and Poggie, R.: Structure, metallurgy, and mechanical properties of a porous tantalum foam. J. Biomed. Mater. Res. Part B 58, 180187 (2001).3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Ronold, H.J., Lyngstadaas, S.P., and Ellingsen, J.E.: Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test. Biomaterials 24, 45594564 (2003).CrossRefGoogle ScholarPubMed
Jatkar, A.D.: A New Catalyst Support Structure for Automotive Catalytic Converters. SAE 971032, 1997.Google Scholar
Koltsakis, G.C., Katsaounis, D.K., Markomanolakis, I.A., Samaras, Z.C., Naumann, D., Saberi, S., and Böhm, A.: Metal Foam Substrate for DOC and DPF Applications. SAE 2007-01-0659, 2007.Google Scholar
Adler, J., and Standke, G.: Open-celled silicon carbide foam and method for production thereof. WO 02/20426 (2002).Google Scholar
Adler, J., Fuessel, A., Boettge, D., Marschallek, F., Jahn, M., and Michaelis, A.: Cellular ceramics in combustion environments. In Proceedings of the International Conference on Cellular Materials, CellMat 2010; Stephani, C., Hipke, T., Scheffler, M., and Adler, J., eds., Deutsche Gesellschaft für Materialkunde e.V. DGM, Oberursel, 2010; pp. 137142.Google Scholar
Adler, J., Teichgraeber, M., Standke, G., Jaunich, H., Stoever, H., and Stoetzel, R.: Open-cell expanded ceramic with a high level of strength, and process for the production thereof. U.S. Patent No. 6 635 339 1997.Google Scholar
Adler, J. and Standke, G.: Si-sic LigaFill® foams and related net-like structures – new lightweight and low-cost materials for spaceborne applications, in Materials for Transportation Technology, Vol. 1, edited by Winkler, P.J. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2000), pp. 270275. doi: 10.1002/3527606025.ch42.CrossRefGoogle Scholar
Quadbeck, P., Kuemmel, K., Hauser, R., Standke, G., Adler, J., Stephani, G., and Kieback, B.: Structural and material design of open-cell powder metallurgical foams. Adv. Eng. Mater., Special Issue: Cellular Materials 13, 10241030 (2011).CrossRefGoogle Scholar
Standke, G., Quadbeck, P., Kümmel, K., Balzer, H., and Wierhake, A.: Transfer of manufacturing process for stainless-steel foam to industrial scale. In Cellular Materials Proceedings, CELLMAT 2012, Conventus Congressmanagement & Marketing GmbH Jena, ISBN 978-3-00-039965-7 (2012).Google Scholar
Hauser, R., Standke, G., Heineck, J., Stephani, G., and Quadbeck, P.: Open cell titanium foams for bone replacement. In Proceedings of the International Conference on Cellular Materials, CellMat 2010; Stephani, G., Hipke, T., Scheffler, M., and Adler, J., eds, Deutsche Gesellschaft für Materialkunde e.V. DGM, Oberursel, 2010; p. 61.Google Scholar
Quadbeck, P., Kuemmel, K., Stephani, G., Standke, G., Adler, J., and Uhlenhut, H.: Molybdenum foams for heat insulation in industrial furnaces. In Cellular Metals for Structural and Functional Applications, CELLMET 2008: Proceedings of the International Symposium on Cellular Metals for Structural and Functional Applications; Stephani, G., ed., Fraunhofer IFAM, Dresden, 2009; p. 107112.Google Scholar
Adler, J., Standke, G., Kopejzny, D., Stephani, G., Kuemmel, K., and Beckert, W.: Thermal radiation shield for vacuum and protective atmosphere. U.S. Patent No. 2008/0131684 (2008).Google Scholar
Phelan, R., Weaire, D., and Brakke, K.: Computation of equilibrium foam structures using the surface evolver. Exp. Math. 4, 181192 (1995).CrossRefGoogle Scholar
Standard Test Method for Cell Size of Rigid Cellular Plastics ASTM D 3576-77 (2004).Google Scholar
PORE!SCAN product information. http://www.giib.de/de/pore_scan.html, 2013.Google Scholar
Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, 1999), p. 1638.Google Scholar
Richardson, J.T., Peng, Y., and Remue, D.: Properties of ceramic foam catalyst supports: Pressure drop. Appl. Catal., A 204, 1932 (2000).CrossRefGoogle Scholar
Buciuman, F.C. and Kraushaar-Czarnetzki, B.: Ceramic foam monoliths as catalyst carriers. 1. Adjustment and description of the morphology. Ind. Eng. Chem. Res. 42, 18631869 (2003).CrossRefGoogle Scholar
Grosse, J., Dietrich, B., Garrido, G.I., Habisreuther, P., Zarzalis, N., Martin, H., Kind, M., and Kraushaar-Czarnetzki, B.: Morphological characterization of ceramic sponges for applications in chemical engineering. Ind. Eng. Chem. Res. 48, 1039510401 (2009).CrossRefGoogle Scholar
Giani, L., Groppi, G., and Tronconi, E.: Mass-transfer characterization of metallic foams as supports for structured catalysts. Ind. Eng. Chem. Res. 44, 49935002 (2005).CrossRefGoogle Scholar
Inayat, A., Freund, H., Zeiser, T., and Schwieger, W.: Determining the specific surface area of ceramic foams: The tetrakaidecahedra model revisited Chem. Eng. Sci. 66, 11791188, (2011).CrossRefGoogle Scholar
Farrauto, R.J., Liu, Y., Ruettinger, W., Ilinich, O., Shore, L., and Giroux, T.: Precious metal catalysts supported on ceramic and metal monolithic structures for the hydrogen economy. Catal. Rev. Sci. Eng. 49, 141196, (2007).CrossRefGoogle Scholar
Haruta, M., Souma, Y., and Sano, H.: Catalytic combustion of hydrogen-II. An experimental investigation of fundamental conditions for burner design. Int. J. Hydrogen Energy 7, 729736 (1982).CrossRefGoogle Scholar
Chin, P., Sun, X., Roberts, G.W., and Spivey, J.J.: Preferential oxidation of carbon monoxide with iron-promoted platinum catalysts supported on metal foams. Appl. Catal., A 302, 2231 (2006).CrossRefGoogle Scholar
Cerri, I., Saracco, G., and Specchia, V.: Methane combustion over low-emission catalytic foam burners. Catal. Today 60, 2132 (2000).CrossRefGoogle Scholar
Jirátová, K., Morávková, L., Malecha, J., and Koutský, B.: Ceramic foam in catalytic combustion of methane. Collect. Czech. Chem. Commun. 60, 473481 (1995).CrossRefGoogle Scholar
Pestryakov, A.N., Lunin, V.V., Devochkin, A.N., Petrov, L.A., Bogdanchikova, N.E., and Petranovskii, V.P.: Selective oxidation of alcohols over foam-metal catalysts. Appl. Catal., A 227, 125130 (2002).CrossRefGoogle Scholar
Wang, Y., Vanderwiel, D.P., Tonkovich, A.L.Y., Gao, Y., and Baker, E.G.: Catalyst structure and method of Fischer-Tropsch synthesis. U.S. Patent No. 2002099103 (2002).Google Scholar
Güttel, R., Kunz, U., and Turek, T.: Reaktoren für die Fischer-Tropsch-Synthese. Chemie Ingenieur Technik 79, 531543 (2007) [in German].CrossRefGoogle Scholar
Reitzmann, A., Patcas, F.C., and Kraushaar-Czarnetzki, B.: Keramische Schwämme: Anwendungspotenzial monolithischer Netzstrukturen als katalytische Packungen. Chemie Ingenieur Technik 78, 885898 (2006) [in German].CrossRefGoogle Scholar
Richardson, J.T. and Twigg, M.V.: Ceramic Foam Catalyst Supports Preparation and Properties. MRS Proceedings, 368, 315 (1994).Google Scholar
Twigg, M.V. and Richardson, J.T.: Theory and applications of ceramic foam catalysts. Chem. Eng. Res. Des. 80, 183189 (2002).CrossRefGoogle Scholar
Twigg, M.V. and Richardson, J.T.: Fundamentals and applications of structured ceramic foam catalysts. Ind. Eng. Chem. Res. 46, 41664177 (2007).CrossRefGoogle Scholar
Van Setten, B.A.A., van Gulijk, C., Makkee, M., and Moulijn, J.A.: Molten salts are promising catalysts. How to apply in practice? Top. Catal. 16/17, 275278 (2001).CrossRefGoogle Scholar
Richardson, J.T., Garrait, M., and Hung, J.K.: Carbon dioxide reforming with Rh and Pt-Re catalysts dispersed on ceramic foam supports. Appl. Catal., A 255, 6982 (2003).CrossRefGoogle Scholar
Buciuman, F.C. and Kraushaar-Czarnetzki, B.: Preparation and characterization of ceramic foam supported nanocrystalline zeolite catalysts. Catal. Today 69, 337342 (2001).CrossRefGoogle Scholar
Landau, L. and Levich, B.: Dragging of a liquid by a moving plate. Acta Phys. Chim. U.R.S.S. 17, 4245 (1942).Google Scholar
Emslie, A.G., Bonner, F.T., and Peck, L.G.: Flow of a viscous liquid on a rotating disk. J. Appl. Phys. 29, 858862 (1958).CrossRefGoogle Scholar
Mezger, T.G.: Das Rheologie Handbuch 2. Auflage (Vincentz Network GmbH & Co. KG, Hannover, 2006) [in German].Google Scholar
Boettge, D., Adler, J., and Standke, G.: Cellular material for high-temperature applications and method for the production thereof. U.S. Patent No. WO2010/066649 (2010).Google Scholar
Philipse, A.P. and Schram, H.L.: Non-darcian airflow through ceramic foams. J. Am. Ceram. Soc. 74, 728732 (1991).CrossRefGoogle Scholar
Standke, G., Adler, J., and Boettge, D.: Open-cell ceramic and/or metal foams having a rough enveloping surface and a method for the production thereof. U.S. Patent No. WO2010/066648 (2010).Google Scholar
Boettge, D. and Adler, J.: Functionalization of ceramic foams for high-temperature catalytic applications illustrated by the development of a lean gas reactor. In Proceedings of the International Conference on Cellular Materials, CellMat 2010; Stephani, G., Hipke, T., Scheffler, M., and Adler, J., eds., Deutsche Gesellschaft für Materialkunde e.V. DGM, Oberursel, 2010; pp. 191196.Google Scholar
Jahn, M., Heddrich, M., Weder, A., Reichelt, E., and Lange, R.: Oxidative dry-reforming of biogas: Reactor design and sofc system integration. Energy Technol. 1, 4858 (2013).Google Scholar
Pestryakov, A.N., Yurchenko, E.N., and Feofilov, A.E.: Foam-metal catalysts for purification of waste gases and neutralization of automotive emissions. Catal. Today 29, 6770 (1996).CrossRefGoogle Scholar
Van Setten, B.A.A.L., Bremmer, J., Jelles, S.J., Makkee, M., and Moulijn, J.A.: Ceramic foam as a potential molten salt oxidation catalyst support in the removal of soot from diesel exhaust gas. Catal. Today 53, 613621 (1999).CrossRefGoogle Scholar
Van Setten, B.A.A.L., van Gulijk, C., Makkee, M., and Moulijn, J.A.: Molten salts are promising catalysts. How to apply in practice? Top. Catal. 16/17, 275278 (2001).CrossRefGoogle Scholar
Carty, W.M. and Lednor, P.W.: Monolithic ceramics and heterogeneous catalysts: Honeycombs and foams. Curr. Opin. Solid State Mater. Sci. 1, 8895 (1996).CrossRefGoogle Scholar
Boettge, D., Adler, J., Standke, G., Krech, T., Krippendorf, R., and Scholz, P.: Catalytically functionalized ceramic foams for exhaust gas treatment. In Cellular Materials Proceedings, CELLMAT 2012, Conventus Congressmanagement & Marketing GmbH Jena, ISBN 978-3-00-039965-7 (2012).Google Scholar
Zeuner, T., Stojanov, P., Busse, P., and Sahm, P.R.: 7th European Conference on Composite Materials ECCM-7, London, May 14-16, 1996. (Woodhead Publishing Ltd., Abington Hall, Cambridge, UK, 1996).Google Scholar
Schreiner, J., Regener, D., Ambos, E., and Ziesemann, M.: Konstruieren und Gießen (4), 32 (2007).Google Scholar
Standke, G., Müller, T., Neubrand, A., Weise, J., and Göpfert, M.: Cost-efficient metal-ceramic composites - novel foam-preforms, casting processes and characterisation. Adv. Eng. Mater. 12, 189196 (2010).CrossRefGoogle Scholar
Acchar, W., Ramalho, E., Souza, F., Torquato, W., Rodrigues, V., and Innocentini, M.: Characterization of cellular ceramics for high-temperature applications. J. Mater. Sci. 43, 65566561 (2008).CrossRefGoogle Scholar
Ortona, A., Pusterla, S., Fino, P., Mach, F.R.A., Delgado, A., and Biamino, S.: Aging of reticulated SiSiC foams in porous burners. Adv. Appl. Ceram. 109, 246251 (2010).CrossRefGoogle Scholar
Presas, M., Pastor, J., Lorca, J., Martín, A., Segurado, J., and González, C.: Strength and toughness of cellular SiC at elevated temperature. Special issue honouring Professor Manuel Elices on the occasion of his 70th birthday, Eng. Fail. Anal. 16, 25982603 (2009).CrossRefGoogle Scholar
Martin, H.P., Standke, G., and Adler, J.: A new oxidation protection strategy for silicon carbide foams. Adv. Eng. Mater. 10, 227234 (2008).CrossRefGoogle Scholar
Bernardo, E., Parcianello, G., Colombo, P., Adler, J., and Boettge, D.: Mullite monoliths, coatings and composites from a preceramic polymer containing alumina nano-sized particles, in Advances in Polymer Derived Ceramics and Composites (John Wiley & Sons, Inc., 2010), pp. 5160.CrossRefGoogle Scholar