Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T20:53:12.172Z Has data issue: false hasContentIssue false

Full-density nanocrystalline Fe–29Al–2Cr intermetallic consolidated from mechanically milled powders

Published online by Cambridge University Press:  31 January 2011

L. He
Affiliation:
Department of Mechanical Engineering, Materials Science and Engineering Program, Louisiana State University, Baton Rouge, Louisiana 70803
E. Ma
Affiliation:
Department of Mechanical Engineering, Materials Science and Engineering Program, Louisiana State University, Baton Rouge, Louisiana 70803
Get access

Abstract

Fe–29Al–2Cr powders with nanoscale grain sizes were produced by mechanical milling of prealloyed intermetallic powders. A consolidation procedure employing high-pressure, low strain rate hot forging (sinter-forging) has been developed to consolidate the powders into full-density compacts. The relative density and average grain size of the compact have been studied as a function of consolidation temperature at constant pressure. Fully dense compacts (>99.5% theoretical density) were produced at a relatively low temperature of 545°C with a pressure of 1.25 GPa. Transmission electron microscopy and x-ray diffraction analysis indicate that the average grain size has been maintained to the order of 30 nm in samples consolidated under these conditions. By using protective Ar atmosphere during mechanical milling and consolidation, contamination of oxygen and carbon in consolidated samples has been controlled to below a small fraction of an atomic percent. Microhardness tests of nanocrystalline Fe–29Al–2Cr samples indicate a significant strengthening effect due to grain size refinement and a monotonic hardness increase with decreasing residual porosity. Our work demonstrates the feasibility of using mechanically milled powders as the source of nanocrystalline materials for the production of fully dense, low-impurity, nanocrystalline bulk samples needed for reliable mechanical property measurements and practical applications.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
2.Birringer, R., Gleiter, H., Klein, H. P., and Marquardt, P., Phys. Lett. 102A, 365 (1984).CrossRefGoogle Scholar
3.Birringer, R. and Gleiter, H., Advances in Materials Science and Engineering, edited by Cahn, R. W. (Pergamon Press, New York, 1988), p. 339.Google Scholar
4.Siegel, R. W., MRS Bull. XV, 60 (1990);CrossRefGoogle Scholar
Siegel, R.W., Ramasamy, S., Hahn, H., Zongquan, L., Ting, L., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).CrossRefGoogle Scholar
5.Froes, F. H. and Suryanarayana, C., J. Met. 40, 12 (1989).Google Scholar
6.Bohn, H., Haubold, T., Barringer, R., and Gleiter, H., Scripta Metall. Mater. 25, 811 (1991).CrossRefGoogle Scholar
7.Hahn, H. and Averback, R. S., J. Am. Ceram. Soc. 74, 2918 (1991).CrossRefGoogle Scholar
8.Altstetter, C., presented at NATO Advanced Study Institute, Portugal, June 28–July10, 1992.Google Scholar
9.Lappalainen, R. and Raj, R., in Microcomposites and Nanophase Materials, edited by Van Aken, D., Was, G., and Ghosh, A. (TMS, 1991), p. 41.Google Scholar
10.Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23, 1679 (1989).CrossRefGoogle Scholar
11.Nieman, G. W., Weertman, J.R., and Siegel, R. W., Scripta Metall. 24, 145 (1990);CrossRefGoogle Scholar
Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991);CrossRefGoogle Scholar
Fougere, G. E., Weertman, J. R., Siegel, R. W., and Kim, S., Scripta Metall. Mater. 26, 1879 (1992).CrossRefGoogle Scholar
12.El-Sherik, A. M., Erb, U., Palumbo, G., and Aust, K. T.Script. Metall. Met. 27, 1185 (1992);CrossRefGoogle Scholar
Erb, U., presented at the 2nd Int. Conf. Nanostr. Mater., Germany, Oct. 1994.Google Scholar
13.Chang, H., Alstetter, C. J., and Averback, R. S., J. Mater. Res. 7, 2962 (1992);CrossRefGoogle Scholar
Chang, H., Höfler, J., Alstetter, C. J., and Averback, R. S., Mater. Sci. Eng. A153, 676 (1992).CrossRefGoogle Scholar
14.Hahn, H., Logas, J., and Averback, R. S., J. Mater. Res. 5, 609 (1990).CrossRefGoogle Scholar
15.Höfler, H. J. and Averback, R. S., in Nanophase and Nanocomposite Materials, edited by Komarneni, S., Parker, J. C., and Thomas, G. J. (Mater. Res. Soc. Symp. Proc. 286, Pittsburgh, PA, 1993), p. 9.Google Scholar
16.Koch, C. C., in Materials Science and Technology, edited by Cahn, R. W., Hassen, P., and Kramer, E.J. (VCH, Weinheim, 1991), Vol. 15, p. 193.Google Scholar
17.Weeber, A. W. and Bakker, H., Physica B 153, 93 (1988).CrossRefGoogle Scholar
18.Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. 65, 305 (1989);CrossRefGoogle Scholar
Eckert, J., Holzer, J. C., Krill, C. E. III, and Johnson, W. L., J. Mater. Res. 7, 1751 (1992).CrossRefGoogle Scholar
19.Christman, T. and Jain, M., Scripta Metall. Mater. 25, 767 (1991);CrossRefGoogle Scholar
Christman, T., Heady, K., and Vreeland, T. Jr, Scripta Metall. Mater. 25, 631 (1991).CrossRefGoogle Scholar
20.Jain, M. and Christman, T., Acta metall. mater. 42, 1901 (1994).CrossRefGoogle Scholar
21.Nash, P., Kim, H., Choo, H., Ardy, H., Hwang, S. J., and Nash, A. S., Mater. Sci. Forum 88–90, 603 (1992);CrossRefGoogle Scholar
Hwang, S. J., Nash, P., Dollar, M., and Dymek, S., Mater. Sci. Forum 88–90, 611 (1992).CrossRefGoogle Scholar
22.Smith, T. R. and Vecchio, K. S., NanoStructural Mater. 5, 11 (1995).CrossRefGoogle Scholar
23.Oehring, M., Appel, F., Pfullmann, Th., and Bormann, R., Appl. Phys. Lett. 66, 941 (1995).CrossRefGoogle Scholar
24.McKamey, C. G., DeVan, J. H., Tortorelli, P. F., and Sikka, V. K., J. Mater. Res. 6, 1779 (1991).CrossRefGoogle Scholar
25.Sikka, V. K., SAMPE Quarterly 22(4), 2 (1991);Google Scholar
Morris, D. G. and Leboeuf, M., Acta metall. mater. 42, 1817 (1994).CrossRefGoogle Scholar
26.German, R. M., Powder Metallurgy Science,2nd ed. (Metal Powder Industries Federation, Princeton, NJ, 1994), p. 321;Google Scholar
and in Powder Metallurgy Processing, edited by Kuhn, H. and Lawley, A. (Academic Press, New York, 1978), pp. 102 and 142.Google Scholar
27.Shih, W. Y., Shih, W-H., and Aksay, I.A., J. Mater. Res. 10, 1000 (1995).CrossRefGoogle Scholar
28. (a)Hertzberg, R. W., Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (John Wiley and Sons, New York, 1989);Google Scholar
(b)Wang, N., Wang, Z., Aust, K. T., and Erb, U., Acta metall. mater. 43, 519 (1995).CrossRefGoogle Scholar
29.Hahn, H. and Gleiter, H., Scripta Metall. 13, 3 (1979).CrossRefGoogle Scholar
30.Schwarz, R. B., Srinivasin, S. R., Petrovic, J. J., and Maggiore, C. J., Mater. Sci. Eng. A 155, 75 (1992).CrossRefGoogle Scholar
31.He, L. and Ma, E., presented at Mater. Res. Soc. Fall Meeting, Boston, Nov. 1994; Mater. Sci. Eng. A, in press.Google Scholar
32.He, L. and Ma, E., unpublished results.Google Scholar
33.Ma, E., J. Mater. Res. 9, 592 (1994);CrossRefGoogle Scholar
Ma, E. and Atzmon, M., Mater. Chem. Phys., 39, 249 (1995).CrossRefGoogle Scholar
34.Atzmon, M., Unruh, K. M., and Johnson, W. L., J. Appl. Phys. 58, 3865 (1985).CrossRefGoogle Scholar
35.Kurland, Sheri, Gatan Corp., private communications.Google Scholar
36.ASTM Standard No. C20–87, standard test methods for apparent porosity, water absorption, apparent specific gravity, and bulk density of burned refractory brick and shapes by boiling water (American Society for Testing and Materials, Philadelphia PA, 1987).Google Scholar
37.Taylor, A., X-ray Metallography (John Wiley & Sons, New York, 1961), p. 455.Google Scholar
38.Binary Alloy Phase Diagrams, edited by Massalski, T.B. (ASM, Metals Park, OH, 1986), Vol. 1, p. 148.Google Scholar
39.Mc Kamey, C. G., private communications. The Vickers hardness measured with 1 kg load is in the range of 225–280 VHN for rolled sheet annealed at high temperatures (>1050 °C). The grain size is of the order of 50–100 μ, m.1050+°C).+The+grain+size+is+of+the+order+of+50–100+μ,+m.>Google Scholar
40.Gertsman, V. Y., Hoffmann, M., Gleiter, H., and Birringer, R., Acta metall. mater. 42, 3539 (1994).CrossRefGoogle Scholar
41.Ashby, M. F. and Jones, R. H., Engineering Materials 1 (Pergamon, Oxford, 1993), p. 81.Google Scholar
42.Ryshkewitch, E., J. Am. Ceram. Soc. 36, 65 (1953).CrossRefGoogle Scholar
43.Duckworth, W., J. Am. Ceram. Soc. 36, 68 (1953).Google Scholar
44.Knudsen, F.P., J. Am. Ceram. Soc. 42, 376 (1959).CrossRefGoogle Scholar
45.Rice, R.W., Mater. Sci. Eng. 73, 215 (1985);CrossRefGoogle Scholar
Rice, R.W., Treatise Mater. Sci. Technol. 2, 199 (1977).CrossRefGoogle Scholar
46.Evans, A. G. and Charles, E. A., J. Am. Ceram. Soc. 59, 371 (1976).CrossRefGoogle Scholar