Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T21:02:20.607Z Has data issue: false hasContentIssue false

Friction and wear studies in N-implanted Al2O3, SiC, TiB2, and B4C ceramics

Published online by Cambridge University Press:  31 January 2011

M. Nastasi
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos. New Mexico 87545
R. Kossowsky
Affiliation:
The Pennsylvania State University, University Park, Pennsylvania 16802
J. -P. Hirvonen
Affiliation:
University of Helsinki, Department of Physics, Helsinki, Finland
N. Elliott
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico 87545
Get access

Abstract

Bulk polycrystalline samples of sintered Al2O3, and hot-pressed Al2O3, SiC, TiB2, and B4C ceramics were ion implanted at 77 K with 190 keV N+ to a dose of 3 × 1017 N/cm2. Nitrogen implantation resulted in reduced friction coefficients for SiC, TiB2, and B4C samples and a reduction in wear for TiB2. Both Al2O3 samples showed a significant increase in friction coefficients after nitrogen implantation. Nitrogen-implantation-induced changes in these properties appear to be correlated with the thermodynamic tendency of the sample to form “nitridelike” bonds.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ion Implantation, edited by Hirvonen, J. K. (Academic, New York, 1980).Google Scholar
2Ion Beam Modification of Materials, edited by Ullrich, B. Manfred (North-Holland, Amsterdam, 1985).Google Scholar
3Roberts, S. G. and Page, T. F., in Ion Implantation into Metals, edited by Ashworth, V., W.Grant, A., and Procter, R.P.M. (Pergamon, Oxford, 1982), p. 135.CrossRefGoogle Scholar
4Burnett, P. J. and Page, T. F., J. Mater. Sci. 19, 3524 (1984).CrossRefGoogle Scholar
5Hioki, T., Itoh, A., Ohkubo, M., Noda, S., Doi, H., Kawamoto, J., and Kamigaito, O., J. Mater. Sci. 21, 1321 (1986).CrossRefGoogle Scholar
6McHargue, C. J., Farlow, G. C., White, C. W., Williams, J. M., Appleton, B. R., and Naramoto, H., Mater. Sci. Eng. 69, 123 (1985).CrossRefGoogle Scholar
7Singer, I. L., Surf. Coat. Technol. 33, 487 (1987).CrossRefGoogle Scholar
8Shimura, H. and Tsuya, Y., in Proceedings International Conference on Wear of Materials, St. Louis, MO (1977), p. 452.Google Scholar
9Fisher, T. E. and Tomizawa, H., Wear 105, 29 (1987).CrossRefGoogle Scholar
10Naguib, H. M. and Kelly, R., Radiat. Eff. 25, 1 (1975).CrossRefGoogle Scholar
11McHargue, C. J., Nucl. Instrum. Methods B 19/20, 797 (1987).CrossRefGoogle Scholar
12Burnett, P. J. and Page, T. F., in Science of Hard Materials II, edited by Brooks, C. and Almond, F. (Adam Hilger, Bristol, 1986), p. 789.Google Scholar
13Pauling, L., The Nature of the Chemical Bond (Cornell U. P., Ithaca, NY, 1960), Chap. 3.Google Scholar
14Wright, R. B. and Gruen, D. M., Radiat. Eff. 33, 133 (1977).CrossRefGoogle Scholar
15White, C. W., Farlow, G. C., McHargue, C. J., Sklad, P. S., Angelini, M. P., and Appleton, B. R., Nucl. Instrum. Methods B 7/8, 473 (1985).CrossRefGoogle Scholar
16McHargue, C. J., Sklad, P. S., Angelini, P., and Lewis, B., Nucl. Instrum. Methods B 1, 146 (1984).Google Scholar
17McHargue, C. J., Yust, C. S., Angelini, P., Sklad, P. S., and Lewis, B., in Ref. 12, p. 789.Google Scholar
18Zeigler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
19Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry, (Pergamon, Oxford, 1979), 5th ed.Google Scholar
20Gerkema, J. and Miedema, A. R., Surf. Sci. 124, 351 (1983).CrossRefGoogle Scholar
21Buckly, D. H. and Miyoshi, K., Wear 100, 801 (1984).Google Scholar
22Pepper, S. V., J. Appl. Phys. 47, 801 (1976).CrossRefGoogle Scholar