Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T17:03:37.907Z Has data issue: false hasContentIssue false

Fracture modes in micropillar compression of brittle crystals

Published online by Cambridge University Press:  13 September 2011

Philip R. Howie*
Affiliation:
Gordon Laboratory, Department of Materials Science and Metallurgy, Cambridge CB2 3QZ, United Kingdom
Sandra Korte
Affiliation:
Gordon Laboratory, Department of Materials Science and Metallurgy, Cambridge CB2 3QZ, United Kingdom
William J. Clegg
Affiliation:
Gordon Laboratory, Department of Materials Science and Metallurgy, Cambridge CB2 3QZ, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This article describes cracking during microcompression of Si, InAs, MgO, and MgAl2O4 crystals and compares this with previous observations on Si and GaAs micropillars. The most common mode of cracking was through-thickness axial splitting, the crack growing downward from intersecting slip bands in pillars above a critical size. The splitting behavior observed in all of these materials was quantitatively consistent with a previous analysis, despite the differences in properties and slip geometry between the different materials. Cracking above the slip bands also occurred either in the side or in the top surface of some pillars. The driving forces for these modes of cracking are described and compared with observations. However, only through-thickness axial splitting was observed to give complete failure of the pillar; it is, therefore, considered to be the most important in determining the brittle-to-ductile transitions that have been observed.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).CrossRefGoogle ScholarPubMed
2.Greer, J.R. and Nix, W.D.: Size dependence of mechanical properties of gold at the sub-micron scale. Appl. Phys. A 80, 1625 (2005).CrossRefGoogle Scholar
3.Bei, H., Shim, S., George, E.P., Miller, M., Herbert, E., and Pharr, G.: Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scr. Mater. 57, 397 (2007).CrossRefGoogle Scholar
4.Östlund, F., Howie, P.R., Ghisleni, R., Korte, S., Leifer, K., Clegg, W.J., and Michler, J.: Ductile-brittle transition in micropillar compression of GaAs at room temperature. Philos. Mag. 91, 1190 (2011).CrossRefGoogle Scholar
5.Östlund, F., Rzepiejewska-Malyska, K., Leifer, K., Hale, L.M., Tang, Y., Ballarini, R., Gerberich, W.W., and Michler, J.: Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Funct. Mater. 19, 2439 (2009).CrossRefGoogle Scholar
6.Michler, J., Wasmer, K., Meier, S., Östlund, F., and Leifer, K.: Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Appl. Phys. Lett. 90, 043123 (2007).CrossRefGoogle Scholar
7.Korte, S. and Clegg, W.J.: Discussion of the dependence of the effect of size on the yield stress in hard materials studied by microcompression of MgO. Philos. Mag. 91, 1150 (2010).CrossRefGoogle Scholar
8.Lloyd, S.J., Molina-Aldareguia, J.M., and Clegg, W.J.: Deformation under nanoindents in sapphire, spinel and magnesia examined using transmission electron microscopy. Philos. Mag. A. 82, 1963 (2002).CrossRefGoogle Scholar
9.Kelly, A., Groves, G.W., and Kidd, P.: Crystallography and Crystal Defects (Wiley, Chichester, 2000).Google Scholar
10.Bouvier, S. and Needleman, A.: Effect of the number and orientation of active slip systems on plane strain single crystal indentation. Modell. Simul. Mater. Sci. Eng. 14, 1105 (2006).CrossRefGoogle Scholar
11.Gilman, J.J.: Chemistry and Physics of Mechanical Hardness (Wiley, New York, 2009).CrossRefGoogle Scholar
12.Korte, S. and Clegg, W.: Micropillar compression of ceramics at elevated temperatures. Scr. Mater. 60, 807 (2009).CrossRefGoogle Scholar
13.Moser, B., Wasmer, K., Barbieri, L., and Michler, J.: Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test. J. Mater. Res. 22, 1004 (2007).CrossRefGoogle Scholar
14.Deneen Nowak, J., Mook, W.M., Minor, A.M., Gerberich, W.W., and Carter, C.B.: Fracturing a nanoparticle. Philos. Mag. 87, 29 (2007).CrossRefGoogle Scholar
15.Deneen, J., Mook, W.M., Minor, A.M., Gerberich, W.W., and Carter, C.B.: In situ deformation of silicon nanospheres. J. Mater. Sci. 41, 4477 (2006).CrossRefGoogle Scholar
16.Gerberich, W.W., Mook, W.M., Perrey, C.R., Carter, C.B., Baskes, M.I., Mukherjee, R., Gidwani, A., Heberlein, J., McMurry, P.H., and Girshick, S.L.: Superhard silicon nanospheres. J. Mech. Phys. Solids. 51, 979 (2003).CrossRefGoogle Scholar
17.Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A. 221, 163 (1921).Google Scholar
18.Gurney, C. and Hunt, J.: Quasi-static crack propagation. Proc. Roy. Soc. A. 299, 508 (1967).Google Scholar
19.Kendall, K.: Complexities of compression failure. Proc. Roy. Soc. A. 361, 245 (1978).Google Scholar
20.Puttick, K.E.: The mechanics of indentation fracture in poly (methyl methacrylate). J. Phys. D. 11, 595 (1978).CrossRefGoogle Scholar
21.Beaber, A.R., Nowak, J.D., Ugurlu, O., Mook, W.M., Girshick, S.L., Ballarini, R., and Gerberich, W.W.: Smaller is tougher. Philos. Mag. 91, 1179 (2011).CrossRefGoogle Scholar
22.Gerberich, W.W., Michler, J., Mook, W.M., Ghisleni, R., Östlund, F., Stauffer, D.D., and Ballarini, R.: Scale effects for strength, ductility, and toughness in “brittle” materials. J. Mater. Res. 24, 899 (2009).CrossRefGoogle Scholar
23.Huang, H. and Gerberich, W.W.: Crack-tip dislocation emission arrangements for equilibrium–II. Comparisons to analytical and computer simulation models. Acta Metall. Mater. 40, 2873 (1992).CrossRefGoogle Scholar
24.Cottrell, A.H.: Theory of brittle fracture in steel and similar metals. Trans. Metall. Soc. AIME. 212, 192 (1958).Google Scholar
25.Gordon, J.E.: The New Science of Strong Materials (Penguin Books, Harlow, 1968).Google Scholar
26.Ashby, M.F. and Sammis, C.G.: The damage mechanics of brittle solids in compression. Pure Appl. Geophys. 133, 489 (1990).CrossRefGoogle Scholar
27.Lawn, B.R. and Wilshaw, T.R.: Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1975).Google Scholar
28.Ericson, F., Johansson, S., and Schweitz, J-Å.: Hardness and fracture toughness of semiconducting materials studied by indentation and erosion techniques. Mater. Sci. Eng., A. 105, 131 (1988).CrossRefGoogle Scholar
29.Adachi, S.: Physical Properties of III-V Semiconductor Compounds (Wiley-VCH, New York, 1992).CrossRefGoogle Scholar
30.Ericson, F. and Schweitz, J-Å.: Micromechanical fracture strength of silicon. J. Appl. Phys. 68, 5840 (2009).CrossRefGoogle Scholar
31.Wortman, J.J. and Evans, R.A.: Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965).CrossRefGoogle Scholar
32.Rice, R.W., Wu, C.C., and McKinney, K.R.: Fracture and fracture toughness of stoichiometric MgAl2O4 crystals at room temperature. J. Mater. Sci. 31, 1353 (1996).CrossRefGoogle Scholar
33.Kushwaha, A.K.: Vibrational and elastic properties of aluminate spinel MgAl2O4. Physica B 405, 2795 (2010).CrossRefGoogle Scholar
34.Conner, C.L. and Faber, K.T.: Segregant-enhanced fracture in magnesium oxide. J. Mater. Sci. 25, 2737 (1990).CrossRefGoogle Scholar
35.Chung, D-H.: Elastic moduli of single crystal and polycrystalline MgO. Philos. Mag. 8, 833 (1963).CrossRefGoogle Scholar
36.Hjort, K., Soderkvist, J., and Schweitz, J-Å.: Gallium arsenide as a mechanical material. J. Micromech. Microeng. 4, 1 (1994).CrossRefGoogle Scholar
37.Beuth, J.L.: Cracking of thin bonded films in residual tension. Int. J. Solids Struct. 29, 1657 (1992).CrossRefGoogle Scholar
38.Çağin, T., Che, J., Gardos, M.N., Fijany, A., and Goddard, W.A.: Simulation and experiments on friction and wear of diamond: A material for MEMS and NEMS application. Nanotechnology 10, 278 (1999).CrossRefGoogle Scholar
39.Bowden, F.P. and Brookes, C.A.: Frictional anisotropy in nonmetallic crystals. Proc. Roy. Soc. A 295, 244 (1966).Google Scholar