Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T21:55:22.718Z Has data issue: false hasContentIssue false

Fracture and deformation in brittle solids: A perspective on the issue of scale

Published online by Cambridge University Press:  03 March 2011

Brian R. Lawn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8500
Get access

Abstract

A perspective on the issue of scale in the fracture and deformation properties of ordinarily brittle covalent–ionic solids (ceramics) is presented. Characteristic scaling dimensions for nanomechanical properties of this class of solids are identified—specimen size or layer thickness, microstructural scale, and contact dimension. Transitions in mechanical damage processes occur as the characteristic dimensions diminish from the macroscale to the submicroscale. Such transitions generally preclude unconditional extrapolations of macroscopic-scale fracture and deformation laws into the nanomechanics region. Strength of brittle solids tends to increase while toughness tends to decrease as the scaling dimensions diminish. The nature of flaws that control strength in the submicroscale region also undergoes fundamental changes—even flaws without well-developed microcracks can be deleterious to strength.

Type
Reviews
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Arzt, E., Acta Mater. 16, 5611 (1998).CrossRefGoogle Scholar
2.Petch, N.J. in Fracture, edited by Liebowitz, H. (Academic Press, New York, 1968), Vol. 1, Chapter 5. p. 351.Google Scholar
3.Rice, R.W., Proc. Br. Ceram. Soc. 20, 205 (1972).Google Scholar
4.Ohji, T., Jeong, T., Choa, Y.K. and Niihara, K., J. Am. Ceram. Soc. 811, 1453 (1998).CrossRefGoogle Scholar
5.Lawn, B.R., Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
6.Griffith, A.A., Phil. Trans. Roy. Soc. Lond. A 221, 163 (1920).Google Scholar
7.Namazu, T., Isono, Y. and Tanaka, T., Journal of Microelectromechanical Systems 9, 450 (2000).CrossRefGoogle Scholar
8.Ding, J.N., Meng, Y.G. and Wen, S.Z., J. Mater. Res. 16, 2223 (2001).CrossRefGoogle Scholar
9.Lehoczky, S.L., J. Appl. Phys. 49, 5479 (1978).CrossRefGoogle Scholar
10.Was, G.S. and Foecke, T., Thin Solid Films 286, 1 (1996).CrossRefGoogle Scholar
11.Josell, D., Heerden, D.v., Read, D., Bonevich, J., Schechtman, D., J. Mater. Res. 13, 2902 (1998).CrossRefGoogle Scholar
12.Gerberich, W.W., Strojny, A., Yoder, K. and Cheng, L-S., J. Mater. Res. 14, 2210 (1999).CrossRefGoogle Scholar
13.Lawn, B.R., Curr. Opin. Solid State Mater. Sci. 6, 229 (2002).CrossRefGoogle Scholar
14.Lawn, B.R., Deng, Y., Miranda, P., Pajares, A., Chai, H., Kim, D.K., J. Mater. Res. 17, 3019 (2002).CrossRefGoogle Scholar
15.Lawn, B.R. and Wilshaw, T.R., J. Mater. Sci. 10, 1049 (1975).CrossRefGoogle Scholar
16.Chai, H., Lawn, B.R. and Wuttiphan, S., J. Mater. Res. 14, 3805 (1999).CrossRefGoogle Scholar
17.Weppelmann, E. and Swain, M.V., Thin Solid Films 286, 111 (1996).CrossRefGoogle Scholar
18.Anderson, R., Toth, G., Gan, L. and Swain, M.V., Eng. Fract. Mech. 61, 93 (1998).CrossRefGoogle Scholar
19.Thomsen, N.B., Fischer-Cripps, A.C. and Swain, M.V., Thin Solid Films 332, 180 (1998).CrossRefGoogle Scholar
20.Begley, M.R., Evans, A.G. and Hutchinson, J.W., Int. J. Solids Struct. 36, 2773 (1999).CrossRefGoogle Scholar
21.Chai, H. and Lawn, B.R., J. Mater. Res. (submitted).Google Scholar
22.Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells (McGraw-Hill, New York, 1959).Google Scholar
23.Frank, F.C. and Lawn, B.R., Proc. Roy. Soc. Lond. A 299, 291 (1967).Google Scholar
24.Chai, H., Int. J. Solids Struct. 40, 591 (2003).CrossRefGoogle Scholar
25.Miranda, P., Pajares, A., Guiberteau, F., Cumbrera, F.L., andB.R. Lawn, Acta Mater. 49, 3719 (2001).CrossRefGoogle Scholar
26.Cai, H., Stevens-Kalceff, M.A. and Lawn, B.R., J. Mater. Res. 9, 762 (1994).CrossRefGoogle Scholar
27.Fischer-Cripps, A.C. and Lawn, B.R., J. Am. Ceram. Soc. 79, 2609 (1996).CrossRefGoogle Scholar
28.Peterson, I.M., Wuttiphan, S., Lawn, B.R. and Chyung, K., Dent. Mater. 14, 80 (1998).CrossRefGoogle Scholar
29.Fischer-Cripps, A.C. and Lawn, B.R., Acta Mater. 44, 519 (1996).CrossRefGoogle Scholar
30.Fischer-Cripps, A.C., J. Am. Ceram. Soc. 84, 2603 (2001).CrossRefGoogle Scholar
31.Lawn, B.R., J. Am. Ceram. Soc. 81, 1977 (1998).CrossRefGoogle Scholar
32.Swanson, P.L., Fairbanks, C.J., Lawn, B.R., Mai, Y-W. and Hockey, B.J., J. Am. Ceram. Soc. 70, 279 (1987).CrossRefGoogle Scholar
33.Quinn, J.B., Sundar, V. and Lloyd, I.K., Dent. Mater. (2003).Google Scholar
34.Horii, H. and Nemat-Nasser, S., Phil. Trans. Roy. Soc. Lond. 19, 603 (1986).Google Scholar
35.Lawn, B.R., Lee, S.K., Peterson, I.M. and Wuttiphan, S., J. Am. Ceram. Soc. 81, 1509 (1998).CrossRefGoogle Scholar
36.Lawn, B.R., Evans, A.G. and Marshall, D.B., J. Am. Ceram. Soc. 63, 574 (1980).CrossRefGoogle Scholar
37.Evans, A.G., J. Am. Ceram. Soc. 73, 187 (1990).CrossRefGoogle Scholar
38.Cho, S-J., Hockey, B.J., Lawn, B.R. and Bennison, S.J., J. Am. Ceram. Soc. 72, 1249 (1989).CrossRefGoogle Scholar
39.Lathabai, S., Rödel, J. and Lawn, B.R., J. Am. Ceram. Soc. 74, 1340 (1991).CrossRefGoogle Scholar
40.Ritchie, R.O., Int. J. Fract. 100, 55 (1998).CrossRefGoogle Scholar
41.Zhao, J.H., Stearns, L.C., Harmer, M.P., Chan, H.M., Miller, G.A. and Cook, R.F., J. Am. Ceram. Soc. 76, 503 (1993).CrossRefGoogle Scholar
42.Rhee, Y-W., Kim, H-W., Deng, Y. and Lawn, B.R., J. Am. Ceram. Soc. 84, 561 (2001).CrossRefGoogle Scholar
43.Lawn, B.R. and Evans, A.G., J. Mater. Sci. 12, 2195 (1977).CrossRefGoogle Scholar
44.Lawn, B.R. and Marshall, D.B., J. Am. Ceram. Soc. 62, 347 (1979).CrossRefGoogle Scholar
45.Lawn, B.R., Dabbs, T.P. and Fairbanks, C.J., J. Mater. Sci. 18, 2785 (1983).CrossRefGoogle Scholar
46.Lawn, B.R. and Howes, V.R., J. Mater. Sci. 16, 2745 (1981).CrossRefGoogle Scholar
47.Dabbs, T.P., Fairbanks, C.J. and Lawn, B.R. in Methods for Assessing the Structural Reliability of Brittle Materials, edited by Freiman, S.W. and Hudson, C.M. (ASTM Special Technical Publication 844, Philadelphia, 1984), pp. 142–53.CrossRefGoogle Scholar
48.Roach, D.H., Lathabai, S. and Lawn, B.R., J. Am. Ceram. Soc. 71, 97 (1988).CrossRefGoogle Scholar
49.Lin, B. and Matthewson, M.J., Philos. Mag. A 74, 1235 (1996).CrossRefGoogle Scholar
50.Hill, M.J. and Rowcliffe, D.J., J. Mater. Sci. 9, 1569 (1974).CrossRefGoogle Scholar
51.Hagan, J.T., J. Mater. Sci. 14, 2975 (1979).CrossRefGoogle Scholar
52.Hagan, J.T., J. Mater. Sci. 15, 1417 (1980).CrossRefGoogle Scholar
53.Kelly, A., Strong Solids (Clarendon Press, Oxford, 1966).Google Scholar
54.Bradby, J.G., Williams, J.S., Wong-Leung, J., Swain, M.V. and Munroe, P., J. Mater. Res. 16, 1500 (2001).CrossRefGoogle Scholar
55.Bradby, J.G., Williams, J.S., Wong-Leung, J., Kucheyev, S.O., Swain, M.V. and Munroe, P., Philos. Mag. A 82, 1931 (2002).CrossRefGoogle Scholar
56.Stach, E.A., Freeman, T., Minor, A.M., Owen, D.K., Cumings, J., Wall, M.A., Chraska, T., Hull, R., Morris, J.W. and Zettl, A., Microscopy and Microanalysis 7, 507 (2001).CrossRefGoogle Scholar