Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T04:33:22.884Z Has data issue: false hasContentIssue false

Formation, properties, thermal characteristics, and crystallization of hard magnetic Pr–Al–Fe–Cu bulk metallic glasses

Published online by Cambridge University Press:  31 January 2011

Zheng Li
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China, and Department of Applied Sciences and Technology, College of Math & Physics, Chongqing University, Chongqing 400044, People's Republic of China
Hai Yang*
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Ming Xiang Pan
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
De Qian Zhao
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Wan Lu Wang
Affiliation:
Department of Applied Sciences and Technology, College of Math & Physics, Chongqing University, Chongqing 400044, People's Republic of China
Wei Hua Wang
Affiliation:
Institute of Physics, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The Pr55–xAl12+xFe33–yCuy (0 ≤ x ≤ 5, 0 ≤ y ≤ 8) bulk metallic glasses (BMGs) 5 mm in diameter and 100 mm in length were prepared by copper mold suction casting. Hysteresis loops of the Pr55–xAl12+xFe33–yCuy BMGs and the corresponding Pr55Al12Fe30Cu3 crystallized alloy were measured, and the results showed that the Pr55–xAl12+xFe33–yCuy BMGs are hard magnetic, while the completely crystallized Pr55Al12Fe30Cu3 alloy is paramagnetic at room temperature. The thermal behavior and crystallization of the Pr55Al12Fe30Cu3 BMG were studied by differential scanning calorimetry, and the results indicated that the Pr-based BMG has obvious glass transition and a wide supercooled liquid region up to 75 K. The crystallization activation energy for the Pr55Al12Fe30Cu3 BMG is much smaller than that of Zr–Ti–Cu–Ni–Be BMG.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lu, I.R., Wilde, G., Goerler, G., and Willnecker, R., J. Non-Cryst. Solids 577, 250252 (1999).Google Scholar
2.Johnson, W.L., MRS Bull. 24, 42 (1999).Google Scholar
3.Shen, T.D. and Schwarz, R.B., Appl. Phys. Lett. 75, 49 (1999).Google Scholar
4.Inoue, A., Zhang, T., and T Masumoto, J. Non-Cryst. Solids 156–158, 473 (1993).CrossRefGoogle Scholar
5.Inoue, A., Zhang, T., Takeuchi, A., and Zhang, W., Mater. Trans. JIM 37, 636 (1996).Google Scholar
6.Inoue, A., Zhang, T., and Takeuchi, A., Mater. Trans. JIM 37, 1731 (1996).Google Scholar
7.He, Y., Price, C.E., and Poon, S.J., Philos. Mag. Lett. 70, 371 (1994).Google Scholar
8.Wang, L., Ding, J., Li, Y., Phuc, N.X., and Dan, N.H., J. Appl. Phys. 89, 8046 (2001).Google Scholar
9.Schneider, S., Bracchi, A., Samwer, K., Seibt, M., and Thiyagarajan, P., Appl. Phys. Lett. 80, 1749 (2002).CrossRefGoogle Scholar
10.Hong, N.M., Dan, N.H., and Phuc, N.X., J. Magn. Magn. Mater. 242, 847 (2002).Google Scholar
11.Chiric, H. and Lupu, N., J. Mater. Sci. Eng. A 304–306, 727 (2001).Google Scholar
12.Fan, G.J., Löser, W., Roth, S., Eckert, J., and Schultz, L., Appl. Phys. Lett. 75, 2984 (1999).Google Scholar
13.Xing, L.Q., Eckert, J., Loser, W., Roth, S., and Schultz, L., J. App. Phys. 88, 3565 (2000).Google Scholar
14.Wei, B.C., Wang, W.H., Pan, M.X., Han, B.S., Zhang, Z.R., and Hu, W.R., Phys. Rev. B 64, 012406 (1999).Google Scholar
15.Wei, B.C., Zhang, Y., Zhuang, Y.X., Zhao, D.Q., Pan, M.X., Wang, W.H., and Hu, W.R., J. Appl. Phys. 89, 3529 (2001).Google Scholar
16.Wei, B.C., Löser, W., Xia, L., Roth, S., Pan, M.X., Wang, W.H., and Eckert, J., Acta Mater. 50, 4357 (2002).Google Scholar
17.Zhang, Y., Tan, H., Kong, H.Z., Yao, B., and Li, Y., J. Mater. Res. 18, 664 (2003).Google Scholar
18.Wang, W.H., Wei, Q., and Bai, H.Y., Appl. Phys. Lett. 71, 58 (1997).Google Scholar
19.Bian, Z., Wang, R.J., Pan, M.X., Zhao, D.Q., and Wang, W.H., Adv. Mater. 15, 616 (2003).Google Scholar
20.Wang, W.H., Bian, Z., Wen, P., Zhang, Y., and Pan, M.X., Intermetallics 10, 1249 (2002).CrossRefGoogle Scholar
21.Hu, Y., Pan, M.X., Liu, L., and Wang, W.H., Mater. Lett. 57, 2698 (2003).Google Scholar
22.Li, Z., Bai, H.Y., Chen, Z.J., Pan, M.X., Zhao, D.Q., Wang, W.L., and Wang, W.H., Acta. Phys. Sin. (in Chinese) 52, 1461 (2003).Google Scholar
23.Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. A 29, 1779 (1998).Google Scholar
24.Fan, G.J., Loeser, W., Eckert, J., and Schultz, L., J. Mater. Res. 15, 1556 (2000).Google Scholar
25.Zhao, Z.F., Pan, M.X., and Wang, W.H., Appl. Phys. Lett. 82, 4699 (2003).Google Scholar
26.Massalski, T.B., Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1992), p. 1734.Google Scholar
27.Inoue, A., Takeuchi, A., and Zhang, T., Metall. Mater. Trans. 29A, 1779 (1998).Google Scholar
28.Zhuang, Y.X., Zhao, D.Q., Pan, M.X., and Wang, W.H., Science in China (Series A) 30, 445 (2000).Google Scholar
29.Altounian, Z., Tu, G.H., and Strom-Olsen, J.O., J. Appl. Phys. 53, 4755 (1982).Google Scholar
30.Meyer, A., Busch, R., and Schober, H., Phys. Rev. Lett. 83, 5027 (1999).Google Scholar
31.Zhuang, Y.X., Wang, W.H., Zhang, Y., Pan, M.X., and Zhao, D.Q., Appl. Phys. Lett. 75, 2392 (1999).Google Scholar