Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T04:42:15.505Z Has data issue: false hasContentIssue false

Formation of the secondary phases in the Pb-containing perovskite films by pulsed laser deposition

Published online by Cambridge University Press:  03 March 2011

M.H. Yeh
Affiliation:
Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30043 Taiwan, Republic of China
K.S. Liu
Affiliation:
Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, 30043 Taiwan, Republic of China
I.N. Lin
Affiliation:
Materials Science Center, National Tsing-Hua University, Hsinchu, 30043 Taiwan, Republic of China
Get access

Abstract

The growth behavior of Pb2+-containing ferroelectric thin films has been systematically examined. The kinetics of the formation of perovskite phase were successfully enhanced by using a material containing no Zr4+-ions, viz., Pb0.95La0.05Ti0.9875O3 (PLT) films, and by utilizing platinum coating on silicon substrate. Meanwhile, the formation of TiO2 phase (rutile) on PLT/Pt(Si) films has been observed and was ascribed to both the outward diffusion of Ti4+-ions from the Ti-layer underneath the Pt-coating and the loss of Pb2+-ions on the surface of the films. The perovskite materials, which were free of either pyrochlore, Zr-rich phase, or TiO2 phase, can be obtained by in situ depositing the PLT films at 450 °C substrate temperature and 1 mbar oxygen pressure. Thus obtained thin films possessed high dielectric constant, ∊r = 1346 and tan δ = 0.071 at 10 kHz, and large charge storage density, Qc = 5.4 μC/cm2 at 50 kV/cm.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Haertling, G. H., Ferroelectrics 75, 25 (1987).CrossRefGoogle Scholar
2Sheppard, L. M., Ceram. Bull. 71, 85 (1992).Google Scholar
3Tiwari, P., Zhekeva, T., and Narayan, J., Appl. Phys. Lett. 63, 304 (1993).Google Scholar
4Roy, D., Krupanidhi, S. B., and Dougherty, J. P., J. Vac. Sci. Teehnol. A 10, 1827 (1992).CrossRefGoogle Scholar
5Sakashita, Y., Segawa, H., Tominaga, K., and Okada, M., J. Appl. Phys. 73, 7857 (1993).CrossRefGoogle Scholar
6Selvaraj, U., Brooks, K., Prasadarao, A. V., Komarneni, S., Roy, R., and Cross, L. E., J. Am. Ceram. Soc. 76, 1441 (1993).Google Scholar
7Hu, H. and Krupanidhi, S. B., Appl. Phys. Lett. 61, 1246 (1992).CrossRefGoogle Scholar
8Kawano, T., Sei, T., and Tsuchiya, T., Jpn. J. Appl. Phys. 30, 2178 (1991).Google Scholar
9Adachi, H., Mitsuyu, T., Yamazaki, O., and Wasa, K., J. Appl. Phys. 60, 736 (1986).CrossRefGoogle Scholar
10Okada, M. and Tominaga, K., J. Appl. Phys. 71, 1955 (1992).CrossRefGoogle Scholar
11Horwitz, J. S., Grabowski, K. S., Chrisey, D. B., and Leuchtner, R. E., Appl. Phys. Lett. 59, 1565 (1991).CrossRefGoogle Scholar
12Kidoh, H., Ogawa, T., Morimoto, A., and Shimizu, T., Appl. Phys. Lett. 58, 2910 (1991).CrossRefGoogle Scholar
13Kidoh, H., Ogawa, T., Yashima, H., Morimoto, A., and Shimizu, T., Jpn. J. Appl. Phys. 31, 2965 (1992).CrossRefGoogle Scholar
14Auciello, O., Mantese, L., Duarte, J., Chen, X., Rou, S. H., Kingon, A. I., Schreiner, A. F., and Krauss, A. R., J. Appl. Phys. 73, 5197 (1993).Google Scholar
15Petersen, G. A. Jr. and McNeil, J.R., Thin Solid Films 220, 87 (1992).CrossRefGoogle Scholar
16Chiang, C. K., Wong-Ng, W., Schenck, P. K., Cook, L. P., and Vaudin, M. D., in Phase Transformation Kinetics in Thin Films, edited by Chen, M., Thompson, M. O., Schwarz, R., and Libera, M. (Mater. Res. Soc. Symp. Proc. 230, Pittsburgh, PA, 1992), p. 321.Google Scholar
17Yeh, M. H., Liu, Y. C., Liu, K. S., Lin, I. N., Lee, J. Y. M., and Cheng, H. F., J. Appl. Phys. 74, 2143 (1993).Google Scholar