Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T12:38:07.706Z Has data issue: false hasContentIssue false

Formation of coherent twins in YBa2Cu3O7–δ superconductors

Published online by Cambridge University Press:  31 January 2011

C. J. Jou
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, and Center for Advanced Materials, Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720
J. Washburn
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, and Center for Advanced Materials, Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720
Get access

Abstract

A nucleation-and-growth mechanism for the twin formation in YBa2Cu3O7–δ superconductors based on the oxygen uptake rate curve and published transmission electron microscopic observations is proposed together with an oxygen-depleted twin boundary model. The difficulty of reaching stoichiometric YBa2Cu3O7 is explained.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Jorgensen, J. D., Geno, M. A., Hinks, D. G., Soderholm, L., Volin, K. J., Hitterman, R. L., Grace, J. D., Schuller, I. K., Segre, C.U., Zhangand, K.Kleefisch, M. S., Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
2Tendeloo, G. Van and Amelinckx, S., J. Electron Microsc. Tech. 8, 285 (1988).CrossRefGoogle Scholar
3Barry, J. C., J. Electron Microsc. Tech. 8, 325 (1988).CrossRefGoogle Scholar
4Sugiyama, M., Suyama, R., Inuzuka, T., and Kubo, H., Jpn. J. Appl. Phys. 26, L1202 (1987).CrossRefGoogle Scholar
5Mitchell, T. E., Roy, T., Schwarz, R. B., Smith, J.R, and Wohlleben, D., J. Electron Microsc. Tech. 8, 317 (1988).CrossRefGoogle Scholar
6Fontaine, D. de, Wille, L.T., and Moss, S.C., Phys. Rev. B 36, 5709 (1987).CrossRefGoogle Scholar
7Tendeloo, G. Van, Zandbergen, H.W., and Amelinckx, S., Solid State Commun. 63, 603 (1987).CrossRefGoogle Scholar
8Iijima, S., Ichihashi, T., Kubo, Y., and Tabuchi, J., Jpn. J. Appl. Phys. 26, L1478 (1987).CrossRefGoogle Scholar
9Chen, C. H., Werder, D. J., Schneemeyer, L. F., Gallagher, P. K., and Waszczak, J.V., Phys. Rev. B 38, 2888 (1988).CrossRefGoogle Scholar
10Jou, C. J., Kilaas, R., and Washburn, J., Lawrence Berkeley Laboratory Report, LBL-25149.Google Scholar
11Pande, C.S., Singh, A.K., Toth, L., Gubser, D. U., and Wolf, S., Phys. Rev. B 36, 5669 (1987).CrossRefGoogle Scholar
12Cava, R. J., Batlogg, B., Chen, C.H., Rietman, E. A., Zahurakand, S.M.Werder, D., Phys. Rev. B 36, 5719 (1987).CrossRefGoogle Scholar
13Verweij, H., Solid State Commun. 64, 1213 (1987).CrossRefGoogle Scholar
14Johnson, D. C., Jacobson, A. J., Newsam, J. M., Lewandowski, J. T., Goshorn, D. P., Xie, D., and Yelon, W. B., in Chemistry of High-Temperature Superconductors, ACS Sym. Ser. 351 (American Chemical Society, Washington, DC, 1987), p. 148.Google Scholar
15Henry, J. Y., Burlet, P., Bourret, A., Roult, G., Bacher, P., Jurgens, M. J. G. M., and Rossat-Mignod, J., Solid State Commun. 64, 1037 (1987).CrossRefGoogle Scholar
16Kishio, K., Shimoyama, J-I., Hasegawa, T., Kitazawa, K., and Fueki, K., Jpn. J. Appl. Phys. 26, L1228 (1987).CrossRefGoogle Scholar
17Hyde, B.G., Thompson, J.G., Withers, R. L., Fitzgerald, J.G., Stewat, A.M., Bevan, D. J. M., Anderson, J. S., Bitmead, J., and Paterson, M.S., Nature 327, 402 (1987).CrossRefGoogle Scholar
18Oyanagi, H., Ihara, H., Matsubara, T., Matsushita, T., Hirabayashi, M., Tokumoto, M., Murata, K., Terada, N., Senzaki, K., Yao, T., Iwasaki, H. and Kimura, Y., Jpn. J. Appl. Phys. 26, L1233 (1987).CrossRefGoogle Scholar
19Raveau, B., Michel, C., and Hervieu, M., in Chemistry of High Temperature Superconductors, ACS Sym. Ser. 351 (American Chemical Society, Washington, DC, 1987), p. 128.Google Scholar
20Hervieu, M., Domenges, B., Michel, C., and Raveau, B., Europhysics Lett. 4, 205 (1987).CrossRefGoogle Scholar
21David, W. I. F., Harrison, W. T. A., Gunn, J. M. F., Moze, O., Soper, A. K., Day, P., Jorgensen, J. D., Hinks, D. G., Beno, M.A., Soderholm, L., Capone, D. W., Schuller, I. K., Segre, C. U., Zhang, K., and Grace, J. D.Nature 327, 310 (1987).CrossRefGoogle Scholar
22Tarascon, J.M., Barboux, P., Bagley, B.G., Greene, L.H., McKinnon, W. R., and Hull, G. W., in Chemistry of High-Temperature Superconductors, ACS Sym. Ser. 351 (American Chemical Society, Washington, DC, 1987), p. 198.CrossRefGoogle Scholar
23Werder, D.J., Chen, C.H., Cava, R.J., and Batlogg, B., Phys. Rev. B 37, 2317 (1988).CrossRefGoogle Scholar
24Hiraga, K., Shindo, D., Hirabayashi, M., Kikuchi, M., and Syono, Y., J. Electron Microsc. 36, 261 (1987).Google Scholar
25Tendeloo, G. Van, Zandbergen, H.W., and Amelinckx, S., Solid State Commun. 63, 389 (1987).CrossRefGoogle Scholar
26Hirotsu, Y., Nakamura, Y., Murata, Y., Nagakura, S., Nishihara, T., and Takata, M., Jpn. J. Appl. Phys. 26, L1168 (1987).CrossRefGoogle Scholar