Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T01:07:42.747Z Has data issue: false hasContentIssue false

Formation of C54–TiSi2 in titanium on nitrogen-ion-implanted (001)Si with a thin interposing Mo layer

Published online by Cambridge University Press:  31 January 2011

S. L. Cheng
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
J. J. Jou
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
L. J. Chen
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
B. Y. Tsui
Affiliation:
Electronics Research and Service Organization, Industrial Technology and Research Institute, Hsinchu, Taiwan, Republic of China
Get access

Abstract

Formation of TiSi2 in titanium on nitrogen-implanted (001)Si with a thin interposing Mo layer has been investigated. The presence of a Mo thin interposing layer was found to decrease the formation temperature of C54–TiSi2 by about 100 °C. A ternary (Ti, Mo)Si2 phase was found to distribute in the silicide layer. The ternary compound is conjectured to provide more heterogeneous nucleation sites to enhance the formation of C54–TiSi2. On the other hand, the effect of grain boundary for decreasing transformation temperature was found to be less crucial. For Ti/Mo bilayer on 30 keV BF2+ or As+ + 20 keV, 1 × 1015/cm2 N2+ implanted samples, a continuous C54–TiSi2 layer was found to form in all samples annealed at 650–950 °C. The presence of nitrogen atoms in TiSi2 is thought to lower the silicide/silicon interface energy and/or the silicide surface energy to maintain the integrity of the C54–TiSi2 layer at high temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ono, M., Saito, M., Yoshitomi, T., Fiegna, C., Ohguro, T., and Iwai, H., IEEE IEDM 1995 Tech. Digest, 119 (1995).Google Scholar
2.Kuroi, T., Shimizu, S., Furukawa, A., Komori, S., Kawasaki, Y., Kusunoki, S., Okumura, Y., Inuishi, M., Tsubouchi, N., and Horie, K., Digest of 1995 Symposium on VLSI Technology, 19 (1995).Google Scholar
3.Shimizu, S., Kuroi, T., Kawasaki, Y., Kusunoki, S., Okumura, Y., Inuishi, M., and Miyoshi, H., IEEE IEDM 1995 Tech. Digest, 859 (1995).Google Scholar
4.Sedgwick, T.O., Michel, A. E., Deline, V. R., Cohen, S. A., and Lasky, J. B., J. Appl. Phys. 63, 1452 (1988).CrossRefGoogle Scholar
5.Ajimera, A. C. and Rozgonyi, G. A., Appl. Phys. Lett. 49, 1269 (1986).CrossRefGoogle Scholar
6.Murakami, T., Kuroi, T., Kawasaki, Y., Inuishi, M., and Matsui, Y., Nucl. Instrum. Methods 121, 257 (1997).CrossRefGoogle Scholar
7.Wong, C.Y., Wang, L. K., McFarland, P.A., and Ting, C.Y., J. Appl. Phys. 60, 243 (1983).CrossRefGoogle Scholar
8.Wong, C. Y., Lai, F. S., McFarland, P. A., d'Heurle, F. M., and Ting, C. Y., J. Appl. Phys. 59, 2773 (1986).CrossRefGoogle Scholar
9.Lasky, J. B., Nakos, J. S., Cain, O. J., and Geiss, P. J., IEEE Trans. Electron Devices, ED-38, 262 (1991).CrossRefGoogle Scholar
10.Mann, R. W., Miles, G. L., Knotts, T. A., Rakowski, D. W., Clevenger, L. A., Harper, J. M. E., d'Heurle, F. M., and Cabral, C. Jr, Appl. Phys. Lett. 67, 18 (1995).CrossRefGoogle Scholar
11.Li, X-H., Carlsson, R. A., Gong, S. F., and Hentzell, H. T. G., J. Appl. Phys. 72, 514 (1992).CrossRefGoogle Scholar
12.Kuwano, H., Phillips, J. R., and Mayer, J. W., Appl. Phys. Lett. 56, 440 (1990).CrossRefGoogle Scholar
13.Mouroux, A., Zhang, S-L., Kaplan, W., Nygren, S., Ostling, M., and Petersson, C. S., Appl. Phys. Lett. 69, 975 (1996).CrossRefGoogle Scholar
14.Ziegler, J., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).CrossRefGoogle Scholar
15. Standard JCPDS diffraction pattern 6–607 [hexagonal (Ti0.4-Mo0.6)Si2], JCPDS-International Center for Diffraction Data, PDF-2 Database, Newton Square, PA.Google Scholar
16. Standard JCPDS diffraction pattern 7–331 [hexagonal (Ti0.8-Mo0.2)Si2], JCPDS-International Center for Diffraction Data, PDF-2 Database, Newton Square, PA.Google Scholar
17.Nitta, T., Ohmi, T., Ishihara, Y., Okita, A., Shibata, T., Suigura, J., and Ohwada, N., J. Appl. Phys. 67, 7404 (1990).CrossRefGoogle Scholar
18.Tasch, A. F. Jr, and Parker, L. H., Proc. IEEE 77, 374 (1989).CrossRefGoogle Scholar
19.Rodder, M., Aur, S., and Chen, I.C., IEEE 1995 IEDM Digest, 415 (1995).Google Scholar
20.Kittle, J. A., Hong, Q. Z., Rodder, M., and Breedijk, T., IEEE IEDM97 Digest, 111 (1997).Google Scholar