Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T20:39:35.376Z Has data issue: false hasContentIssue false

Formation of Bi–Sr–Ca–Cu–O superconducting films by electrodeposition

Published online by Cambridge University Press:  31 January 2011

María Soledad Martín-Gonzalez
Affiliation:
Departamento de Quimica Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
Javier Garci´a-Jaca
Affiliation:
Departamento de Quimica Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
Emilio Morán
Affiliation:
Departamento de Quimica Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
Miguel Ángel Alario-Franco
Affiliation:
Departamento de Quimica Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
Get access

Abstract

Superconducting films of the Bi–Sr–Ca–Cu–O family of oxides were prepared by electrodeposition of the constituent metals followed by an oxidative thermal treatment. The influence of water, stirring of the electrolyte, cleaning of the substrate, and deposition time on the quality of the films were studied. Before the thermal treatment, the electrodeposited films consisted of a mixture of different metals and carbonates of the constituent elements. The oxidation of the metallic phases and the decomposition of the carbonates occurred in the ranges 260–280 °C and 400–470 °C, respectively. The final oxides were obtained after an oxidative thermal treatment at 800 °C. Lower temperatures were not sufficient for the preparation of the superconducting oxide films. The prepared Bi-2201 films consisted of a mixture of two phases with different strontium, bismuth, and oxygen contents. The Bi-2212 films were composed of platelike particles with a preference to orientate along the (001) direction. These films showed critical temperatures up to 92 K and critical current densities up to 15,000 A/cm2 (at 77 K and zero field) when the films were pressed before the thermal treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.McDevitt, J.T., Haupt, S.G., and Jones, C.E., Electroanal. Chem. 19, 337 (1996).Google Scholar
2.Alford, N.McN, Penn, S.J., and Button, T.W., Supercond. Sci. Technol. 10, 169 (1997).CrossRefGoogle Scholar
3.Bhattacharya, R.N., Parila, P.A., Noufi, R., Arendt, P., and Elliot, N., J. Electrochem. Soc. 139, 67 (1992).CrossRefGoogle Scholar
4.Weston, A., Lalvani, S., and Ali, N., J. Mater. Sci. 2, 129 (1991).Google Scholar
5.Venigalla, S., Bendale, P., and Adair, J.H., J. Electrochem. Soc. 142, 2101 (1995).CrossRefGoogle Scholar
6.Sezak, P. and Wieckowski, A., J. Electrochem. Soc. 138, 1038 (1991).CrossRefGoogle Scholar
7.Bhattacharya, R.N., Parila, P.A., Mason, A., Roybal, L.L., Ahrenkiel, R.K., Noufi, R., Hellmer, R.P., Kwak, J.F., and Ginley, D.S., J. Mater. Res. 6, 1389 (1991).CrossRefGoogle Scholar
8.Bhattacharya, R.N. and Paranthaman, M., Physica C 251, 105 (1995).CrossRefGoogle Scholar
9.Maxfield, M., Eckhardt, H., Iqbal, Z., Reidinger, F., and Baughman, R.H., Appl. Phys. Lett. 139, 1932 (1989).CrossRefGoogle Scholar
10.Richardson, K.A., Arrigan, D.M.W, de Groot, P.A.J., Lanchester, P.C., and Bartlett, P.N., Electrochim. Acta 10, 1629 (1996).CrossRefGoogle Scholar
11.Martín-González, M.S., García-Jaca, J., Morán, E., and Alario-Franco, M.A., Physica C 297, 185 (1998).CrossRefGoogle Scholar
12.Bhattacharya, R.N., Noufi, R., Roybal, L.L., and Ahrenkiel, R.K., J. Electrochem. Soc. 138, 1643 (1991).CrossRefGoogle Scholar
13.Ondoño-Castillo, S., Fuentes, A., Pérez, F., Gómez-Romero, P., and Casañ-Pastor, N., Chem. Mater. 7, 771 (1995).CrossRefGoogle Scholar
14.Zurawski, D.J., Kulesza, P.J., and Wieckowski, A., J. Electrochem. Soc. 136, 1607 (1988).CrossRefGoogle Scholar
15.Minoura, H., Naruto, K., Takano, H., Haseo, E., Sugiura, T., Uneo, Y., and Endo, T., Chem. Lett. 379 (1991).CrossRefGoogle Scholar
16.Copperthwaite, R.G., Davies, P.R., Morris, M.A., Roberts, M.W., and Ryder, R.A., Catal. Lett. 1, 11 (1988).CrossRefGoogle Scholar
17.Majewski, P., Supercond. Sci. Technol. 10, 453 (1997).CrossRefGoogle Scholar
18.Antipov, E., Putilin, S., and Shpanchenko, R., Card No. 45–0315, JCPDS-International Center for Diffraction Data (1993).Google Scholar
19.Horyn, R., Supercond. Sci. Technol. 3, 347 (1990).CrossRefGoogle Scholar
20.Majewski, P., Adv. Mater. 6, 460 (1994).CrossRefGoogle Scholar
21.Saggio, A., Sujata, K., and Hahn, J., J. Am. Ceram. Soc. 72, 849 (1989).CrossRefGoogle Scholar
22.Ikeda, Y., Ito, H., and Shimomura, S., Physica C 159, 93 (1989).CrossRefGoogle Scholar
23.Chakoumakos, B.S., Ebey, P.S., Sales, B.C., and Sonder, E., J. Mater. Res. 4, 767 (1989).CrossRefGoogle Scholar
24.Roth, R.S., Rawn, C.J., Burton, B.P., and Beech, F., J. Res. Natl. Inst. Bur. Stand. Technol. U.S. 95, 291, (1990).CrossRefGoogle Scholar
25.Matheis, D.P. and Snyder, R.L., Powder Diffr. 5, 8 (1990).CrossRefGoogle Scholar
26.Ondoño-Castillo, S. and Casañ-Pastor, N., Physica C 268, 317 (1996).CrossRefGoogle Scholar
27.Gendre, Ph., Schmirgeld, L., Regnier, P., Senoussi, S., Frikach, K., and Marquet, A., Physica C 235–240, 953 (1994).CrossRefGoogle Scholar
28.Gao, W. and Vander Sande, J.B., J. Phys. IV 3, 187 (1993).Google Scholar
29.Legendre, F., Schmirgeld-Mignot, L., Regnier, P., Gendre, Ph., and Sénoussi, S., Inst. Phys. Conf. Ser. 148, 339 (1995).Google Scholar
30.Holesinger, T.G., Phillips, D.S., Coulter, J.Y., Willis, J.O., and Peterson, D.E., Physica C 243, 93 (1995).CrossRefGoogle Scholar