Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T22:23:33.087Z Has data issue: false hasContentIssue false

Formation and Stability of Quasicrystalline and Hexagonal Approximant Phases in an Al–Mn–Be Alloy

Published online by Cambridge University Press:  31 January 2011

G. S. Song
Affiliation:
Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, South Korea
E. Fleury
Affiliation:
Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, South Korea
S. H. Kim
Affiliation:
Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, South Korea
W. T. Kim
Affiliation:
Department of Physics, Chongju University, Chongju 360-746, South Korea
D. H. Kim
Affiliation:
Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, South Korea
Get access

Abstract

Phase formation and thermal stability for an Al–Mn–Be alloy have been investigated by melt-spinning and conventional casting. Significant differences in the phase formation and the thermal stability of the microstructure were found as a result of the different cooling rates. In the melt-spun ribbons, a large volume fraction of a metastable icosahedral phase was found to coexist with an Al solid solution. In the bulk cast ingots, the primary phase formed in the two-phase microstructure was a hexagonal approximant phase of quasicrystals. This phase that solidified in the form of faceted particles embedded in the Al solid matrix proved to be thermodynamically stable during annealing at 540 °C for 100 h. The effect of Be addition on the formation of the stable approximant phase is discussed in terms of the Hume–Rothery mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shechtman, D., Blech, I.A., Gratias, D., and Cahn, J.W., Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
Bendersky, L.A., Phys. Rev. Lett. 55, 1461 (1985).CrossRefGoogle Scholar
Tsuda, K., Saito, M., Terauchi, M., Tanaka, M., Tsai, A.P., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 32, 129 (1993).CrossRefGoogle Scholar
Kelton, K.F., in Intermetallic Compounds, edited by Westbrook, J.H. and Fleischer, R.L. (John Wiley & Sons, New York, 1994), Vol. 1, p. 453.Google Scholar
Bendersky, L., J. Microsc. 146, 303 (1987).CrossRefGoogle Scholar
Shoemaker, C.B., Keszler, D.A., and Shoemaker, D.P., Acta Crystallogr. B 45, 13 (1989).CrossRefGoogle Scholar
Bendersky, L.A., Mater. Sci. Forum 22–24, 151 (1987).CrossRefGoogle Scholar
Kreiner, G. and Franzen, H.F., J. Alloys Compd. 221, 15 (1995).CrossRefGoogle Scholar
Uchida, M. and Horiuchi, S., J. Appl. Crystallogr. 32, 417 (1999).CrossRefGoogle Scholar
Biggs, B.D., Pierce, F.S., and Poon, S.J., Europhys. Lett. 19, 415 (1992).CrossRefGoogle Scholar
Schenk, T., Klein, H., Audier, M., Simonet, V., Hippert, F., Rodriguez-Carvajal, J., and Bellissent, R., Philos. Mag. Lett. 76, 189 (1997).CrossRefGoogle Scholar
Yokoyama, Y., Tsai, A.P., Inoue, A., and Masumoto, T., Mater. Trans. Jpn. Inst. Met. 32, 1089 (1991).Google Scholar
Lee, S.M., Kim, B.H., Kim, D.H., and Kim, W.T., J. Mater. Res. 16, 1535 (2001).CrossRefGoogle Scholar
Mondolfo, L.F., Aluminum Alloys: Structure and Properties (Butterworths, London, United Kingdom, 1976), p. 447.CrossRefGoogle Scholar
Raynold, G.V.S., Acta Metall. 1, 629 (1953).Google Scholar
Harmelin, M. and Yu-Zhang, K., J. Less-Common Met. 145, 411 (1988).CrossRefGoogle Scholar
Elser, V., Phys. Rev. B 32, 4892 (1985).CrossRefGoogle Scholar
Kim, B.H., Lee, S.M., Kim, S.H., Kim, W.T., and Kim, D.H., Philos. Mag. Lett. (in press).Google Scholar
Sordelet, D.J., Bloomer, T.A., Kramer, M.J., and Unal, O., J. Mater. Sci. Lett. 15, 935 (1996).CrossRefGoogle Scholar
Ko¨ster, U. and Schuhmacher, B., Mater. Sci. Eng. 99, 417 (1988).CrossRefGoogle Scholar
Kim, S.H., Song, G.S., Fleury, E., Kim, W.T., Kim, D.H., and Chattopadhyay, K., Philos. Mag. A (in press).Google Scholar
McAlister, A.J. and Murray, J.L., Binary Alloy Phase Diagrams, edited by Massalski, T.B. (ASM International, Materials Park, OH, 1990), p. 172.Google Scholar
Dong, C., Scr. Mater. 33, 239 (1995).CrossRefGoogle Scholar
Boer, F.R. de, Boom, R., Mattens, W.C.M., Miedema, A.R., and Niessen, A.K., Cohesion in Metals (Elsevier Science, Amsterdam, The Netherlands, 1989), p. 366.Google Scholar