Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T15:31:22.096Z Has data issue: false hasContentIssue false

Formation and characteristics of nanocrystalline composites γ–TiAl + Ti2AlN by mechanical alloying and subsequent annealing treatment

Published online by Cambridge University Press:  03 March 2011

K.Y. Wang
Affiliation:
State Key Laboratory for Advanced Metal Materials, University of Science and Technology Reijing, 100083 Beijing, and State Key Laboratory for Rapidly Solidified-Nonequilibrium Alloys, Institute of Metal Research, Academia Sinica, 110015 Shenyang, China
J.G. Wang
Affiliation:
State Key Laboratory for Advanced Metal Materials, University of Science and Technology Beijing, 100083 Beijing, China
G.L. Chen
Affiliation:
State Key Laboratory for Advanced Metal Materials, University of Science and Technology Beijing, 100083 Beijing, China
Get access

Abstract

Formation of nanocrystalline composites γ-TiAl + Ti2AlN by mechanically alloying (MA) Ti50Al50 in a N2 atmosphere and subsequent annealing treatment are investigated. The development of the microstructure was monitored by x-ray diffraction, and differential thermal analysis and transmission electron microscopy. The amorphous phase could be obtained after milling for 30 h in a nitrogen atmosphere. The TEM results show that some nanocrystalline solid solution of Al in Ti also existed in the amorphous matrix. The results of annealing treatments at different temperatures for 0.5 h on the amorphous phase obtained by MA in N2 gas for 30 h show the formation of γ-phase (TiAl) and a nitride of titanium and aluminum (Ti2AlN). Available annealing treatments could produced nanocrystalline composites of γ-TiAl and Ti2AlN with a grain size less than 20 nm. With increasing annealing temperature, the crystalline sizes of γ-TiAl and Ti2AlN increase, but the values of microhardness increase slightly.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Froes, F. H., Suryanarayana, C., and Eliezer, D., J. Mater. Sci. 27, 5113 (1992).CrossRefGoogle Scholar
2High Temperature Aluminides and Intermetallics, edited by Whang, S. H., Liu, C. T., Pope, D. P., and Stiegler, J.O. (Metallurgical Society of AIME, Warrendale, PA, 1990).Google Scholar
3Mabuchi, H., Tsuda, H., Nakayama, Y., and Sukedai, E., J. Mater.Res. 7, 894 (1992).CrossRefGoogle Scholar
4Chang, H., Altstetter, C. J., and Averback, R. S., J. Mater. Res. 7, 2962 (1992).CrossRefGoogle Scholar
5Itsukaichi, T., Shiga, S., Masuyama, K., Umemoto, M., and Okane, I., Mater. Sci. Forum 88–90, 631 (1992); Itsukaichi, T., Masuyama, K., Umemoto, M., Okane, I., and Cabanas-Moreno, J.G., J. Mater. Res. 8, 1817 (1993).CrossRefGoogle Scholar
6Suryanarayana, G., Chen, G-H., Frefer, A., and Froes, F. H., Mater. Sci. Eng. A158, 93 (1992).CrossRefGoogle Scholar
7Yamaguchi, M. and Inui, H., Structural Metallics, edited by Darolia, R., Lewandowski, J. J., Liu, C. T., Martin, P. L., Miracle, D. B., and Nathal, M. V. (The Minerals, Metals and Materials Society, Warrendale, PA, 1993), p. 127.Google Scholar
8Koch, C. C., Cavin, O. B., McKamey, C.G., and Scarbrough, J.C., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
9Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
10Hellstern, E. and Schultz, L., Philos. Mag. B56, 443 (1987).CrossRefGoogle Scholar
11Ogino, Y., Yamasaki, T., Miki, M., Atsumi, N., and Yoshioka, K., Scripta Metall. Mater. 28, 967 (1993).CrossRefGoogle Scholar
12Whittenberger, J. D., Arzt, E., and Luton, M. J., J. Mater. Res. 5, 271 (1990).CrossRefGoogle Scholar
13Ogino, Y., Murayama, S., and Yamasaki, T., J. Less-Comm. Met. 168, 221 (1991).CrossRefGoogle Scholar
14Chen, G. and Wang, K., 2nd Int. Conf. on Structural Applications of Mechanical Alloying, edited by de Barbadillo, J. J., Froes, F. H., and Schwarz, R. (ASM, Materials Park, OH, 1993), p. 149; Wang, K. Y., Chen, G. L., and Wang, J. G., Scripta Metall. Mater. 31, 87 (1994).Google Scholar
15Ann, J. H., Chung, H. S., Watanabe, R., and Park, Y. H., Mater. Sci. Forum 88–90, 347 (1992).Google Scholar
16Bonetti, E., Valdre, G., Enzo, S., and Cocco, G., J. Alloys and Compounds 194, 331 (1993).CrossRefGoogle Scholar
17Fecht, H. J., Han, G., Fu, Z., and Johnson, W. L., J. Appl. Phys. 67, 1744 (1990).CrossRefGoogle Scholar
18Murty, B. S., Naik, M. D., Mohan Rao, M., and Ranganathan, S., Mater. Forum 16, 19 (1992).Google Scholar
19Guinier, A., X-Ray Diffraction (Freeman, San Francisco, CA, 1963).Google Scholar
20Okamoto, H., J. Phase Equilibria 14, 120 (1993).CrossRefGoogle Scholar
21Wang, K. Y., He, A. Q., and Wang, J.T., Metall. Trans. 24A, 225 (1993).CrossRefGoogle Scholar
22Wang, K. Y., unpublished results.Google Scholar
23Elliott, R. P. and Rostoker, W., Acta Metall. 2, 884 (1954).CrossRefGoogle Scholar
24Vujic, D., Li, Z., and Whang, S.H., Metall. Trans. 19A, 2445 (1988).CrossRefGoogle Scholar
25Siegel, R. W., Springer in Materials Sciences, edited by Fujita, F. E. (Springer-Verlag, Berlin, Heidelberg), Vol. 27, p. 65.Google Scholar
26Suryanarayana, C. and Frees, F. H., Adv. Mater. 5, 96 (1993).CrossRefGoogle Scholar
27Chang, H., Hofler, H. J., Alstetter, C. J., and Averback, R. S., Scripta Metall. Mater. 52, 1161 (1991).CrossRefGoogle Scholar
28Christman, T. and Jain, M., Scripta Metall. Mater. 25, 767 (1991).CrossRefGoogle Scholar
29Fougere, G. E., Weertman, J. R., Siegel, R. W., and Kim, S., Scripta Metall. Mater. 26, 1879 (1992).CrossRefGoogle Scholar
30Siegel, R. W., Ramasamy, S., Hahn, H., Zongquan, L., Ting, L., and Gronsky, R., J. Mater. Res. 3, 1367 (1988).CrossRefGoogle Scholar
31Wang, K. Y., unpublished results.Google Scholar