Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T23:32:17.307Z Has data issue: false hasContentIssue false

Fluorescence property and dissolution site of Er3+ in Ta2O5 film prepared by sol-gel method and dip-coating technique

Published online by Cambridge University Press:  03 March 2011

Noriyuki Wada
Affiliation:
Department of Materials Science and Engineering, Suzuka National College of Technology, Shiroko, Suzuka, Mie 510-0294, Japan
Michiyo Kubo
Affiliation:
Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
Nobuko Maeda
Affiliation:
Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
Maegawa Akira
Affiliation:
Industrial Research Center of Shiga Prefecture, 232 Kamitoyama, Rittou, Shiga 520-3004, Japan
Kazuo Kojima
Affiliation:
Department of Applied Chemistry, Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
Get access

Abstract

Ta2O5xEr2O3 (TE) films were produced by a sol-gel method and a dip-coating technique with heat treatment at 600–1000 °C. Their powders were also prepared from the same sol. The Er3+ fluorescence property of the TE films containing various contents of Er3+ was measured as a function of the heat-treatment temperature. In crystallized films, the Er3+ fluorescence was observed because water-related residues (Ta–OH and H2O) and carbon-related residues (–CH3, –CH2–, –(C ⁼ O)–, and C≡C–H) were removed from the films. It is shown from infrared absorption spectroscopy that Ta–O and Ta ⁼ O structures dissolve the Er3+ ions selectively and play a role in dispersing the Er3+. The strongest Er3+ fluorescence is observed in the TE film with 2 mol% of Er2O3 because of its highest ability to disperse the Er3+ ions.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shibata, S.: Thin Solid Films 277 1 (1996).CrossRefGoogle Scholar
2Rehg, T.J., Ochoa-Tapia, J.A., Knoesen, A. and Higgins, B.G.: Appl. Optics 28 5215 (1989).CrossRefGoogle Scholar
3Kim, S.O. and Kim, H.J.: J. Vac. Sci. Technol. B 12 3006 (1994).CrossRefGoogle Scholar
4Rubio, F., Denis, J., Albella, J.M. and Martinz-Duart, J.M.Thin Solid Films 90 405 (1982).CrossRefGoogle Scholar
5Graham, D.W. and Stinton, D.P.: J. Am. Ceram. Soc. 77 2298 (1994).CrossRefGoogle Scholar
6Hensler, D.H., Cuthbert, J.D., Martin, R.J. and Tien, P.K.: Appl. Optics 10 1037 (1971).CrossRefGoogle Scholar
7Terui, H. and Kobayashi, M.: Appl. Phys. Lett. 32 666 (1978).CrossRefGoogle Scholar
8Oshio, S., Yamamoto, M., Kuwata, J. and Matsuoka, T.: J. Appl. Phys. 71 3471 (1992).CrossRefGoogle Scholar
9Kojima, K., Yoshida, S., Shiraishi, H. and Maegawa, A.: Appl. Phys. Lett. 67 3423 (1995).CrossRefGoogle Scholar
10Ohishi, T., Maekawa, S. and Katoh, A.: J. Non-Cryst. Solids 147–148 493 (1992).CrossRefGoogle Scholar
11Yamazaki, M. and Kojima, K.: J. Mater. Sci. Lett. 14 813 (1995).CrossRefGoogle Scholar
12Terao, N.: Jpn. J. Appl. Phys. 6 21 (1967).CrossRefGoogle Scholar
13Gonzalez, J., Del, M., Ruiz, C., Rivarola, J.B. and Pasquevich, D.: J. Mater. Sci. 33 4173 (1998).CrossRefGoogle Scholar
14 JCPDS No. 19-1299. International Center for Diffraction Data: Newton Square, PA (1993).Google Scholar
15Bansal, N.P.: J. Mater. Sci. 29 5065 (1994).CrossRefGoogle Scholar
16 JCPDS No. 25-922. International Center for Diffraction Data: Newton Square, PA (1993).Google Scholar
17Davis, K.M. and Tomozawa, M.: J. Non-Cryst. Solids 201 177 (1996).CrossRefGoogle Scholar
18Bois, L., Maquet, J., Babonneau, F., Mutin, H. and Bahloul, D.: Chem. Mater. 6 796 (1994).CrossRefGoogle Scholar
19Socrates, G. in Infrared Characteristic Group Frequencies Table and Charts, 2nd ed. (John Wiley & Sons, New York, 1994).Google Scholar
20Ono, H. and Koyanagi, K.Appl. Phys. Lett. 77, 1431 (2000).CrossRefGoogle Scholar
21Meyer, K.: J. Non-Cryst. Solids 209 227 (1997).CrossRefGoogle Scholar
22Hayakawa, S., Yoko, T. and Sakka, S.: J. Ceram. Soc. Jpn. 102 522 (1994).CrossRefGoogle Scholar
23Burcham, L.J., Datka, J. and Wachs, I.E.: J. Phys. Chem. B 103 6015 (1999).CrossRefGoogle Scholar
24Shannon, R.D.Acta Cryst. A 32 751 (1976).CrossRefGoogle Scholar
25Tepehan, F.Z., Ghodsi, F.E., Ozer, N. and Tepehan, G.G.Solar Energy Mater. & Solar Cells 59 265 (1999).CrossRefGoogle Scholar
26An, C.H. and Sugimoto, K.: J. Electrochem. Soc. 139 1956 (1992).CrossRefGoogle Scholar
27Stephenson, N. C. and Roth, R.S.Acta Cryst. B 27, 1037 (1971).CrossRefGoogle Scholar
28Sawada, H. and Kawakami, K.: J. Appl. Phys. 86 956 (1999).CrossRefGoogle Scholar
29Xu, W., Dai, S., Toth, L.M., Del Cul, G.D. and Peterson, J.R.: J. Phys. Chem. 99 4447 (1995).CrossRefGoogle Scholar
30Lu, Y-L., Lu, Y-Q. and Ming, N-B.: Appl. Phys. B 62 287 (1996).CrossRefGoogle Scholar
31Murata, T., Moriyama, Y. and Morinaga, K.: Sci. Tech. Adv. Mater. 1 139 (2000).CrossRefGoogle Scholar
32Morinaga, K., Yoshida, H. and Takebe, H.: J. Am. Ceram. Soc. 77 3113 (1994).CrossRefGoogle Scholar
33Murata, T., Torisaka, M., Takebe, H. and Morinaga, K.: J. Non-Cryst. Solids 220 139 (1997).CrossRefGoogle Scholar