Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T04:37:27.671Z Has data issue: false hasContentIssue false

Flocculation after injection molding in ceramic suspensions

Published online by Cambridge University Press:  03 March 2011

J.H. Song
Affiliation:
Department of Materials Technology, Brunel University, Uxbridge Middlesex, UB8 3PH, United Kingdom
J.R.G. Evans
Affiliation:
Department of Materials Technology, Brunel University, Uxbridge Middlesex, UB8 3PH, United Kingdom
Get access

Abstract

The flocculation of an unstabilized suspension of fine ceramic particles is advanced as the explanation for the formation of cracks in a “liquid” suspension. The development of cracks was observed several minutes after reheating wax-based ceramic moldings above the melting point of the wax and was accompanied by phase separation of the wax from the molding. Calculations of the acceleration of particles under London dispersion forces in a viscous fluid show the “time to impact” as a function of initial separation distance, fluid viscosity, and particle size. This is compared with the intercollision time calculated from classical flocculation theory, and it is shown that for crowded suspensions initial interparticle distances are such that the London force field cannot be neglected. Methods of preventing the flocculation are described.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Evans, J.R. G., in New Materials and Their Applications, edited by Holland, D. (Institute of Physics, Bristol, UK, 1990), pp. 2532.Google Scholar
2Wright, J. K., Edirisinghe, M. J., Zhang, J. G., and Evans, J. R. G., J. Am. Ceram. Soc. 73, 2653 (1990).CrossRefGoogle Scholar
3Zhang, J. G., Edirisinghe, M. J., and Evans, J. R. G., J. Euro. Ceram. Soc. 5, 63 (1989).CrossRefGoogle Scholar
4Zhang, T. and Evans, J.R.G., J. Mater. Res. 8, 187 (1993).CrossRefGoogle Scholar
5Zhang, T. and Evans, J. R. G., in The Processing, Properties and Applications of Metallic and Ceramic Materials, edited by Loretto, M. H. and Beevers, C. J. (M. C. E. Publishers, Birmingham, UK, 1992), pp. 7984.Google Scholar
6Zhang, T. and Evans, J.R.G., J. Euro. Ceram. Soc. 12, 51 (1993).CrossRefGoogle Scholar
7Quackenbush, C. L., French, K., and Neil, J. T., Ceram. Eng. Sci. Proc. 3, 20 (1982).CrossRefGoogle Scholar
8Wright, J. K., Thomson, R. M., and Evans, J. R. G., J. Mater. Sci. 25, 149 (1990).CrossRefGoogle Scholar
9Coble, R. L. and Burke, J. E., in Progress in Ceramic Science, edited by Burke, J. E. (Pergamon, London, UK, 1963), Vol. 3, p. 197.Google Scholar
10Lange, F. F. and Metcalf, M., J. Am. Ceram. Soc. 66, 398 (1983).CrossRefGoogle Scholar
11Kellet, B. and Lange, F. F., J. Am. Ceram. Soc. 67, 369 (1984).CrossRefGoogle Scholar
12Sudre, O. and Lange, F. F., J. Am. Ceram. Soc. 75, 3241 (1992).CrossRefGoogle Scholar
13Song, J. H. and Evans, J. R. G., J. Euro. Ceram. Soc. 12, 467 (1993).CrossRefGoogle Scholar
14Edirisinghe, M. J. and Evans, J. R. G., Int. J. High Technol. Ceram. 2, 1 (1986).CrossRefGoogle Scholar
15Evans, J. R. G. and Edirisinghe, M. J., J. Mater. Sci. 26, 2081 (1991).CrossRefGoogle Scholar
16Edirisinghe, M. J. and Evans, J. R. G., J. Mater. Sci. 22, 269 (1987).CrossRefGoogle Scholar
17Thomas, M. S. and Evans, J.R.G., Br. Ceram. Trans. J. 87, 22 (1988).Google Scholar
18Wright, J. K. and Evans, J. R. G., Ceram. Int. 17, 79 (1991).CrossRefGoogle Scholar
19Bao, Y. and Evans, J.R.G., J. Euro. Ceram. Soc. 8, 95 (1991).CrossRefGoogle Scholar
20Song, J. H. and Evans, J.R.G., Process. Adv. Mater. 3, 193 (1993).Google Scholar
21Barone, M. R. and Ulicny, J. C., J. Am. Ceram. Soc. 73, 3223 (1990).CrossRefGoogle Scholar
22Israelachvili, J., Intermolecular and Surface Forces, 2nd ed. (Academic Press, London, UK, 1991), pp. 176212.Google Scholar
23Napper, D. H., Polymer Stabilization of Colloidal Dispersions (Academic Press, London, UK, 1983), pp. 2021.Google Scholar
24Rowland, F., Bulas, R., Rothstein, E., and Eirich, F. R., Ind. Eng. Chem. 57 (9), 46 (1965).CrossRefGoogle Scholar
25Tanford, C., Physical Chemistry of Macromolecules (John Wiley, New York, 1967), p. 150.Google Scholar
26loc. cit. 21, pp. 298299.Google Scholar
27loc. cit. 22, pp. 324329.Google Scholar
28Schofield, J. D., in Recent Developments in the Technology of Surfactants, edited by Porter, M. R. (Elsevier, London, UK, 1990), pp. 3563.Google Scholar
29Schofield, J. D., European Patent 0240160, April 17, 1991.Google Scholar
30Gregory, J., in The Scientific Basis of Flocculation, edited by Ives, K.J. (Sijthoff and Noordhoff, Alpher aan der Rijn, The Netherlands, 1978), pp. 101130.CrossRefGoogle Scholar
31Cogswell, F. N., Polymer Melt Rheology (Godwin & Son, London, UK, 1981), p. 77.Google Scholar
32Fowkes, F. M., in Treatise on Adhesion and Adhesives, edited by Patrick, R.L. (Arnold, London, UK, 1967), Vol. 1, pp. 325449.Google Scholar
33loc. cit. 21, p. 295.Google Scholar
34Song, J. H. and Evans, J. R. G., J. Am. Ceram. Soc. 77, 806 (1994).CrossRefGoogle Scholar
35Kruyt, H. R. and Overweek, J.T. G., An Introduction to Physical Chemistry (Heinemann, London, UK, 1960), pp. 67.Google Scholar
36Heer, C. V., Statistical Mechanics: Kinetic Theory and Stochastic Process (Academic Press, New York, 1972), pp. 416418.Google Scholar
37Einstein, A., Ann. Phys. 17, 549 (1905). See also Investigations on the Theory ofBrownian Movement, edited by Furth, R., translated by Cowper, A.D. (Methuen, London, 1926) pp. 118.CrossRefGoogle Scholar
38Mysels, K. J., Introduction to Colloid Chemistry (Interscience, New York, 1959), Chap. 5.Google Scholar