Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T01:29:24.477Z Has data issue: false hasContentIssue false

Floating zone partial melting and solidification of SmBCO superconductor under low oxygen partial pressure

Published online by Cambridge University Press:  31 January 2011

M. Sumida
Affiliation:
Department of Metallurgy, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113, Japan
S. Matsuoka
Affiliation:
Superconductivity Research Laboratory–International Superconductivity Technology Center, 1-10-13, Shinonome, Koto-ku, Tokyo, 135, Japan
Y. Shiohara
Affiliation:
Superconductivity Research Laboratory–International Superconductivity Technology Center, 1-10-13, Shinonome, Koto-ku, Tokyo, 135, Japan
T. Umeda
Affiliation:
Department of Metallurgy, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113, Japan
Get access

Abstract

Microstructure control of SmBCO superconductor was carried out using the floating zone partial melting and solidification method under 0.01 atm oxygen partial pressure which is a preferable atmosphere to obtain a crystal with stoichiometric SmBCO. The growth rate, initial composition, and addition of small amount of platinum dependences on the microstructure formations of the (Sm211 + L) mixture during melting and the Sm123 or Sm123/211 during solidification were investigated. Furthermore, superconductive properties of the solidified Sm123/211 were measured by SQUID after appropriate oxygen annealing. Estimated critical current density of the single crystalline Sm123/211 was 3.6 × 104 A/cm at 77 K, 1 T.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kitazawa, K., Coherence in High Temperature Superconductors, edited by Deutscher, G. and Revcolevschi, A. (World Science Pub., Singapore, 1996), Chap. 3, pp. 195211.Google Scholar
2.Matsushita, T., Otabe, E. S., Ni, B., Kimura, K., Morita, M., Tanaka, M., Kimura, M., Miyamoto, K., and Sawano, K., Jpn. J. Appl. Phys. 30 (3A), March, L342–L345 (1991).CrossRefGoogle Scholar
3.Czerwonka, J. and Eick, H. A., J. Solid State Chem. 90, 6978 (1991).CrossRefGoogle Scholar
4.Krauns, Ch., Sumida, M., Tagami, M., Yamada, Y., and Shiohara, Y., Z. Phys. B 96, 207212 (1994).CrossRefGoogle Scholar
5.Lee, D. F., Selvamanickam, V., and Salama, K., Physica C 202, 8396 (1992).CrossRefGoogle Scholar
6.Murakami, M., Melt Processed High Temperature Superconductor (World Science Pub., Singapore, 1992), pp. 211229.Google Scholar
7.Chopra, M., Chan, S-W., Meng, R. L., and Chu, C. W., J. Mater. Res. 11, 16161626 (1996).CrossRefGoogle Scholar
8.Krauns, Ch., Tagami, M., Nakamura, M., Yamada, Y., and Shiohara, Y., Advances in Superconductivity VII (Springer-Verlag, Tokyo, 1995), pp. 641644.CrossRefGoogle Scholar
9.Yi, Z., Beduz, C., Yang, Y., Scurlock, R. G., Ren, Y., and de Groot, P. A. J., Cryogenics 33 (5), 519521 (1993).CrossRefGoogle Scholar
10.Murakami, M., Yoo, S. I., Higuchi, T., Sakai, N., Weltz, J., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 33, L715–L717 (1994).CrossRefGoogle Scholar
11.Kambara, M., Tagami, M., Yao, X., Goodlin, E. A., Shiohara, Y., and Umeda, T., unpublished.Google Scholar
12.Yoshizumi, M., Program and Extended Abstracts (1997 International Workshop on Superconductivity, Cosponsored by ISTEC and MRS, June 15–18, 1997, Big Island, Hawaii, pp. 295296.Google Scholar
13.Yoo, S. I., Murakami, M., Sakai, N., Ohyama, T., Higuchi, T., Watahiki, M., and Takahashi, M., J. Electron Mater. 24, (12), 19231930 (1995).Google Scholar
14.Oka, K., and Ito, T., Physica C 227, 7784 (1994).CrossRefGoogle Scholar
15.Suimida, M., Nakamura, Y., Shiohara, Y., and Umeda, T., J. Mater. Res. 12, 19791989 (1997).CrossRefGoogle Scholar
16.Krauns, Ch., Tagami, M., Nakamura, M., Yamada, Y., and Shiohara, Y., Advances in Superconductivity VII (Springer-Verlag, Tokyo, 1995), pp. 641644.CrossRefGoogle Scholar
17.Wolf, Th., Goldacker, W., Obst, B., Roth, G., and Flükiger, R., J. Cryst. Growth 96, 10101018 (1989).CrossRefGoogle Scholar
18.Cima, M. J., Flemings, M. C., Figueredo, A. M., Nakade, M., Ishii, H., Brody, H. D., and Haggerty, J. S., J. Appl. Phys. 72 (1), 179190 (1992).CrossRefGoogle Scholar
19.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Cryst. Growth 128, 757761 (1993).CrossRefGoogle Scholar
20.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 16211628 (1992).CrossRefGoogle Scholar
21.Mori, N. and Ogi, K., J. Jpn. Inst. Metals 58 (12), 14441453 (1994).CrossRefGoogle Scholar
22.Nakamura, Y. and Shiohara, Y., J. Mater. Res. 11, 24502457 (1996).CrossRefGoogle Scholar
23.Sumida, M., Shiohara, Y., and Umeda, T., J. Jpn. Inst. Metals 61 (9), 956962 (1997).CrossRefGoogle Scholar
24.Sumida, M., Shiohara, Y., and Umeda, T., Proceedings of the 4th Decennial International Conference on Solidification Processing (7–10 July 1997, Ranmoor House, University of Sheffield, UK), pp. 431435.Google Scholar
25.Ogawa, N., Hirabayashi, I., and Tanaka, S., Physica C 177, 101105 (1991).CrossRefGoogle Scholar
26.Matsuoka, S., Sumida, M., Umeda, T., and Shiohara, Y., Abstracts of the Japan Institute of Metals, Tokyo, March 26–28, 1997, p. 242.Google Scholar
27.Fullman, R. L., Trans. AIME 197, 447 (1953).Google Scholar
28.DeHoff, R. T. and Rhines, F. N., Quantitative Microscopy (McGraw-Hill Publishing, 1968), pp. 145166.Google Scholar
29.Kogachi, M., Nakabayashi, K., Minamigawa, S., and Nakanishi, S., Jpn. J. Appl. Phys. 29 (6), L911914 (1990).CrossRefGoogle Scholar
30.Bean, C. P., Rev. Mod. Phys. 36, 3139 (1964).CrossRefGoogle Scholar
31.Gyorgy, E. M., van Dover, R. B., Jackson, K. A., Schneemeyer, L. F., and Waszczak, J. V., Appl. Phys. Lett. 55 (3), 283285 (1989).CrossRefGoogle Scholar
32.Nakamura, Y., Furuya, K., Izumi, T., and Shiohara, Y., J. Mater. Res. 13501356 (1994).CrossRefGoogle Scholar
33.Strobel, P., Paulsen, C., and Tholence, J. L., Solid State Commun. 65 (7), 585589 (1988).CrossRefGoogle Scholar
34.Wiest, R. J. M., Davis, S. N., and Rumer, R. R. Jr, in Flow Through Porous Media, edited by De Wiest, R. J. M. (Academic Press, London, 1969), pp. 1107; D. Dicker, ibid., Chap. 7, pp. 293–330.Google Scholar