Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T13:41:03.374Z Has data issue: false hasContentIssue false

First-principles study of oxygen incorporation and migration mechanisms in Ti2AlC

Published online by Cambridge University Press:  31 January 2011

Ting Liao
Affiliation:
High-Performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Jingyang Wang*
Affiliation:
High-Performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Yanchun Zhou
Affiliation:
High-Performance Ceramic Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We performed density-functional calculations of oxygen incorporation and diffusion in layered Ti2AlC for a range of intrinsic- and impurity-element chemical potentials. In view of the thermal equilibrium coexistence between oxygen-dissolved Ti2AlC and the oxide scale, a thermodynamic scheme is presented that allows the comparison of the relative stability of oxygen defects in different exterior environments. The calculations show that the oxygen atom favors substitution on carbon lattice sites (OC) under oxygen-lean conditions and high temperatures, whereas the occurrence of an oxygen interstitial in the aluminum atomic layer (IO-tri) becomes more preferential in an oxygen-rich atmosphere and low temperatures. Interstitial oxygen (IO-tri) diffusion via a metastable interstitial site (IO-oct) has a comparatively low migration energy. The substitutional oxygen defect (OC) diffuses by exchanging with neighboring carbon vacancy, which needs a relatively high diffusion barrier.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wang, X.H. and Zhou, Y.C.: High-temperature oxidation behavior of Ti2AlC in air. Oxid. Met. 59, 303 (2003).CrossRefGoogle Scholar
2.Salama, I., El-Raghy, T., and Barsoum, M.W.: Oxidation of Nb2AlC and (Ti, Nb)2AlC in air. J. Electrochem. Soc. 150, C152 (2003).CrossRefGoogle Scholar
3.Gupta, S. and Barsoum, M.W.: Synthesis and oxidation of V2AlC and (Ti0.5, V0.5)2AlC in air. J. Electrochem. Soc. 151, D24 (2004).Google Scholar
4.Barsoum, M.W., Ho-Duc, L.H., Radovic, M., and El-Raghy, T.: Long time oxidation study of Ti3SiC2, Ti3SiC2/SiC, and Ti3SiC2/ TiC composites in air. J. Electrochem. Soc. 150, B166 (2003).CrossRefGoogle Scholar
5.Lin, Z.J., Zhuo, M.J., Zhou, Y.C., Li, M.S., and Wang, J.Y.: Microstructures and adhesion of the oxide scale formed on titanium aluminum carbide substrates. J. Am. Ceram. Soc. 89, 2964 (2006).CrossRefGoogle Scholar
6.Zhang, H.B., Zhou, Y.C., Bao, Y.W., and Li, M.S.: Abnormal thermal shock behavior of Ti3SiC2 and Ti3AlC2. J. Mater. Res. 21, 2401 (2006).CrossRefGoogle Scholar
7.Wang, X.H. and Zhou, Y.C.: Oxidation behavior of Ti3AlC2 at 1000–1400 °C in air. Corros. Sci. 45, 891 (2003).CrossRefGoogle Scholar
8.Rosen, J., P.O.Å. Persson, Ionescu, M., Kondyurin, A., Mckenzie, D.R., and Bilek, M.M.M.: Oxygen incorporation in Ti2AlC thin films. Appl. Phys. Lett. 92, 064102 (2008).CrossRefGoogle Scholar
9.Yeo, J.N., Jee, G.M., Yu, B.D., Kim, H., Chung, C.H., Yeom, H.W., Lyo, I.W., Kong, K.J., Miyamoto, Y., Sugino, O., and Ohno, T.: Ab initio study of the oxidation on vicinal Si(001) surfaces: The stepselectiven oxidation. Phys. Rev. B: Condens. Matter 76, 115317 (2007).CrossRefGoogle Scholar
10.Stoneham, A.M., Szymanski, M.A., and Shluger, A.L.: Atomic and ionic processes of silicon oxidation. Phys. Rev. B: Condens. Matter 63, 241304 (2001).CrossRefGoogle Scholar
11.Szymanski, M.A., Stoneham, A.M., and Shluger, A.: The different roles of charged and neutral atomic and molecular oxidising species in silicon oxidation from ab initio calculations. Solid-State Electron. 45, 1233 (2001).CrossRefGoogle Scholar
12.Barbier, A., Stierle, A., Finocchi, F., and Jupille, J.: Stability and stoichiometry of (polar) oxide surfaces for varying oxygen chemical potential. J. Phys. Condens. Matter 20, 184014 (2008).CrossRefGoogle Scholar
13.Finnis, M.W., Lozovoi, A.Y., and Alavi, A.: The oxidation of NiAl: What can we learn from ab initio calculations? Annu. Rev. Mater. Res. 35, 167 (2005).CrossRefGoogle Scholar
14.Chung, C.H., Yeom, H.W., Yu, B.D., and Lyo, I.W.: Oxidation of step edges on Si(001)-c(4°2). Phys. Rev. Lett. 97, 036103 (2006).CrossRefGoogle Scholar
15.Abbet, S., Heiz, U., H. Häkkinen, and Landman, U.: CO oxidation on a single Pd atom supported on magnesia. Phys. Rev. Lett. 86, 5950 (2001).CrossRefGoogle ScholarPubMed
16.Segall, M.D., Lindan, P.L.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002).CrossRefGoogle Scholar
17.Perdew, J.P., Cherary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., and Fiolhais, C.: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B: Condens. Matter 46, 6671 (1992).CrossRefGoogle ScholarPubMed
18.Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B: Condens. Matter 41, 7892 (1990).CrossRefGoogle Scholar
19.Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B: Condens Matter 16, 1748 (1977).Google Scholar
20.Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D., and Andzelm, J.: A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 28, 250 (2003).CrossRefGoogle Scholar
21.Stull, D.R. and Prophet, H.: JANAF Thermochemical Tables, 2nd ed. (U.S. National Bureau of Standards, Washington, DC, 1971).Google Scholar