Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T08:48:39.987Z Has data issue: false hasContentIssue false

First principles study of influence of alloying elements on TiAl: Lattice distortion

Published online by Cambridge University Press:  31 January 2011

Y. Song
Affiliation:
Titanium Alloy Laboratory, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110015, People's Republic of China
R. Yang
Affiliation:
Titanium Alloy Laboratory, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110015, People's Republic of China
D. Li
Affiliation:
Titanium Alloy Laboratory, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110015, People's Republic of China
W. T. Wu
Affiliation:
State Key Laboratory for Corrosion and Protection, Institute of Corrosion and Protection of Metals, Chinese Academy of Sciences, 62 Wencui Road, Shenyang 110015, People's Republic of China
Z. X. Guo
Affiliation:
Department of Materials, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, United Kingdom
Get access

Abstract

The influence of ternary additions Cr, Fe, Mn, Ni, Zr, Nb, Mo, Hf, Ta, Si, Ga, Ge, In, and Sb, as well as the anti-site defects of both Ti and Al, on lattice parameters of TiAl were studied by the first principles electronic structure calculations with a discrete variational cluster method. The results of the calculation show that the effect of ternary additions on the distortion of TiAl lattice varies with the substitution behavior of the individual alloying element involved. The addition of alloying elements in TiAl causes a change in the electronic structure and the density of states of the system and results in variation of the bond strength between the atoms. The total and partial density of states (DOS) of binary TiAl and of ternary TiAl–M, M = Cr, Zr, and Sb, etc., were comparatively examined. The relationship between the DOS and the bond strength is discussed. The present work suggests that the origin of the lattice distortion of the ternary TiAl–M systems lies in the variation of the electronic structure.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hug, G., Loiseau, A., and Lasalmonie, A., Philos. Mag. A 54, 47 (1986).CrossRefGoogle Scholar
2.Kawabata, T., Fukai, H., and Izumi, O., Acta Mater. 46, 2185 (1998).CrossRefGoogle Scholar
3.Kawabata, T., Tamura, T., and Izumi, O., Metall. Trans. A 24A, 141 (1993).CrossRefGoogle Scholar
4.Hashimoto, K., Doi, H., Kasahara, K., Tsujimoto, T., and Suzuki, T., J. Japan Inst. Met. 54, 539 (1990).CrossRefGoogle Scholar
5.Hashimoto, K., Doi, H., Tsujimoto, T., and Suzuki, T., Mater. Trans. JIM 32, 574 (1991).CrossRefGoogle Scholar
6.Hashimoto, K., Nobuki, M., Doi, H., Tsujimoto, T., and Nakamura, M., J. Japan Inst. Met. 57, 898 (1993).CrossRefGoogle Scholar
7.Kimura, T., Doi, H., Hashimoto, K., Abe, E., and Isoda, Y., J. Japan Inst. Met. 61, 385 (1997).CrossRefGoogle Scholar
8.Kasahara, K., Hashimoto, K., Doi, H., and Tsujimoto, T., J. Japan Inst. Met. 51, 278 (1987).CrossRefGoogle Scholar
9.Vujic, D., Li, Z., and Whang, S.H., Metall. Trans. A 19A, 2445 (1988).CrossRefGoogle Scholar
10.Tsujimoto, T., Hashimoto, K., and Nobuki, M., Mater. Trans. JIM 33, 989 (1992).CrossRefGoogle Scholar
11.Song, Y., Xu, D.S., Yang, R., Li, D., and Hu, Z.Q., Intermetallics 6, 157 (1998).CrossRefGoogle Scholar
12.Erschbaumer, H., Podloucky, R., Rogl, P., Tonmitschka, G., and Wagner, R., Intermetallics 1, 99 (1993).CrossRefGoogle Scholar
13.Wolf, W., Podloucky, R., Rogl, P., and Erschbaumer, H., Intermetallics 4, 201 (1996).CrossRefGoogle Scholar
14.Zou, J. and Fu, L.C., Phys. Rev. B 51, 2115 (1995).CrossRefGoogle Scholar
15.Papanikolaou, N., Zeller, R., and Dederichs, P.H., Phys. Rev. B 55, 4157 (1997).CrossRefGoogle Scholar
16.Ellis, D.E. and Painter, G.S., Phys. Rev. B 2, 2887 (1970).CrossRefGoogle Scholar
17.Hedin, L. and Lundqvist, B.I., J. Phys. C 4, 2064 (1971).CrossRefGoogle Scholar
18.Song, Y., Yang, R., Li, D., Wu, W.T., and Guo, Z.X., Phys. Rev. B 59, (1998).Google Scholar
19.Hao, Y.L., Xu, D.S., Cui, Y.Y., Yang, R., and Li, D., Acta Mater. 47, 1129 (1999).CrossRefGoogle Scholar
20.Xu, D.S., Song, Y., Li, D., and Hu, Z.Q., Philos. Mag. A 75, 1185 (1997).CrossRefGoogle Scholar
21.Yang, J.L., Xiao, C.Y., Xia, S.D., and Wang, K.L., Phys. Rev. B 46, 13709 (1992).Google Scholar
22.Froes, F.H., Suryanarayana, C., and Eliezer, D., J. Mater. Sci. 27, 5113 (1992).CrossRefGoogle Scholar
23.Hashimoto, K., Nobuki, M., Abe, E., Nakamura, M., Doi, H., Kimura, T., and Isoda, M., personal communication (1997).Google Scholar
24.Morinaga, M., Saito, J., Yukawa, N., and Adachi, H., Acta Metall. Mater. 38, 25 (1990).CrossRefGoogle Scholar