Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T19:56:23.095Z Has data issue: false hasContentIssue false

Field emission from laser cut CNT fibers and films

Published online by Cambridge University Press:  22 November 2013

Steven B. Fairchild
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433
John S. Bulmer
Affiliation:
Department of Materials Science & Metallurgy, University of Cambridge, Cambridge, CB3 0FS
Martin Sparkes
Affiliation:
Department of Engineering, Institute for Manufacturing, University of Cambridge, Cambridge, CB3 0FS
John Boeckl*
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433
Marc Cahay
Affiliation:
Spintronics and Vacuum Nanoelectronics Laboratory, University of Cincinnati, Cincinnati Ohio 45221
Tyson Back
Affiliation:
Research Institute, University of Dayton, Dayton, Ohio 45469-0170
P. Terrence Murray*
Affiliation:
Research Institute, University of Dayton, Dayton, Ohio 45469-0170
Gregg Gruen
Affiliation:
TechFlow Scientific, Albuquerque, New Mexico 87110
Matthew Lange
Affiliation:
TechFlow Scientific, Albuquerque, New Mexico 87110
Nathaniel P. Lockwood
Affiliation:
Directed Energy Directorate, Air Force Research Laboratory, Kirtland Air Force Base, New Mexico 87117
Francisco Orozco
Affiliation:
Department of Engineering, Institute for Manufacturing, University of Cambridge, Cambridge, CB3 0FS
William O’Neill
Affiliation:
Department of Engineering, Institute for Manufacturing, University of Cambridge, Cambridge, CB3 0FS
Catharina Paukner
Affiliation:
Department of Materials Science & Metallurgy, University of Cambridge, Cambridge, CB3 0FS
Krzysztof K. K. Koziol
Affiliation:
Department of Materials Science & Metallurgy, University of Cambridge, Cambridge, CB3 0FS
*
b)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Field emission (FE) measurements are reported from carbon nanotube (CNT) fibers and laser-patterned free standing films fabricated by direct online condensation from a floating catalyst chemical vapor deposition reactor. Fiber and film cathodes showed stable emission in the 1–2 mA current (I) range at maximum cathode temperatures less than 1000 °C; film cathodes show localized heating at the triangular tips and higher maximum temperatures than the fibers. Fowler–Nordheim (FN) analysis indicated a change in the morphology of the emitters with increasing external electrical field (Eext). Fiber cathode IEext data are interpreted as FN emission from the fiber tip which is eventually limited by space-charge effects. At higher Eext, FN emission from the fiber sidewall occurs. The single fiber cathode stopped emitting abruptly when field induced self-heating effects became significant. For CNT films, self-heating effects can destroy a portion of the film, but FE can still occur from other areas.

Type
Invited Papers
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Milne, W.I., Teo, K.B.K., Minoux, E., Groening, O., Gangloff, L., Hudanski, L., Schnell, J-P., Dieumegard, D., Peauger, F., Bu, I.Y.Y., Bell, M.S., Legagneux, P., Hasko, G., and Amaratunga, G.A.J.: Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers. J. Vac. Sci. Technol. B 24, 345 (2006).CrossRefGoogle Scholar
Sanborn, G., Turano, S., Collins, P., and Ready, W.J.: A thin film triode type carbon nanotube field emission cathode. Appl. Phys. A 110, 99 (2013).CrossRefGoogle Scholar
Manohara, H., Toda, R., Lin, R.H., Liao, A., and Mojarradi, M.: Carbon nanotube-based digital vacuum electronics and miniature instrumentation for space exploration. In Proceedings of the SPIE, Vol. 7594, H. Schenk and W. Piyawattanametha, eds. (2010).Google Scholar
Manohara, H., Toda, R., Lin, R., Liao, A., Bronikowski, M., and Siegel, P.: Carbon nanotube bundle array cold cathodes for THz vacuum tube sources. J. Infrared, Millimeter, Terahertz Waves 30, 1338 (2009).Google Scholar
Tyler, T., Shenderova, O., Ray, M., Dalton, J., Wang, J., Outlaw, R., Zhu, M., Zhao, X., McGuire, G., and Holloway, B.C.: Back-gated milliampere-class field emission device based on carbon nanosheets. J. Vac. Sci. Technol. B 24, 2295 (2006).CrossRefGoogle Scholar
Krivchenko, V.A., Pilevsky, A.A., Rakhimov, A.T., Seleznev, B.V., Suetin, N.V., Timofeyev, M.A., Bespalov, A.V., and Golikova, O.L.: Nanocrystalline graphite: Promising material for high current field emission cathodes. J. Appl. Phys. 107, 014315 (2010).CrossRefGoogle Scholar
Bonard, J-M., Salvetat, J-P., Stockli, T., de Heer, W.A., Forro, L., and Chatelain, A.: Field emission from single-wall carbon nanotube films. Appl. Phys. Lett. 73, 918 (1998).CrossRefGoogle Scholar
Bonard, J-M., Maier, F., Stöckli, T., Châtelain, A., de Heer, W.A., Salvetat, J-P., and Forró, L.: Field emission properties of multiwalled carbon nanotubes. Ultramicroscopy 73, 7 (1998).CrossRefGoogle Scholar
Lee, J., Jung, Y., Song, J., Kim, J.S., Lee, G-W., Jeong, H.J., and Jeong, Y.: High-performance field emission from a carbon nanotube carpet. Carbon 50, 3889 (2012).CrossRefGoogle Scholar
Chen, G., Shin, D.H., Iwasaki, T., Kawarada, H., and Lee, C.J.: Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays. Nanotechnology 19, 415703 (2008).CrossRefGoogle ScholarPubMed
Calderón-Colón, X., Geng, H., Gao, B., An, L., Cao, G., and Zhou, O.: A carbon nanotube field emission cathode with high current density and long-term stability. Nanotechnology 20, 325707 (2009).CrossRefGoogle ScholarPubMed
Perea-López, N., Rebollo-Plata, B., Briones-León, J.A., Morelos-Gómez, A., Hernández-Cruz, D., Hirata, G.A., Meunier, V., Botello-Méndez, A.R., Charlier, J-C., Maruyama, B., Muñoz-Sandoval, E., López-Urías, F., Terrones, M., and Terrones, H.: Millimeter-long carbon nanotubes: Outstanding electron-emitting sources. ACS Nano 5, 5072 (2011).CrossRefGoogle ScholarPubMed
Li, Y.L., Kinloch, I.A., and Windle, A.H.: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science 304, 276 (2004).CrossRefGoogle ScholarPubMed
Paukner, C. and Koziol, K.K.: Ultra-pure single wall carbon nanotube fibers continuously spun without promoter. Nature Sci. Rep. (2013, submitted).CrossRefGoogle Scholar
Behabtu, N., Young, C.C., Tsentalovich, D.E., Kleinerman, O., Wang, X., Ma, A.W.K., Bengio, E.A., ter Waarbeek, R.F., de Jong, J.J., Hoogerwerf, R.E., Fairchild, S.B., Ferguson, J.B., Maruyama, B., Kono, J., Talmon, Y., Cohen, Y., Otto, M. J., and Pasquali, M.: Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339, 182 (2013).CrossRefGoogle ScholarPubMed
Zakhidov, A.A., Nanjundaswamy, R., Obraztsov, A.N., Zhang, M., Fang, S., Klesch, V.I., Baughman, R.H., and Zakhidov, A.A.: Field emission of electrons by carbon nanotube twist-yarns. Appl. Phys. A 88, 593 (2007).CrossRefGoogle Scholar
Liu, P., Wei, Y., Liu, K., Liu, L., Jiang, K., and Fan, S.: New-type planar field emission display with superaligned carbon nanotube yarn emitter. Nano Lett. 12, 2391 (2012).CrossRefGoogle ScholarPubMed
Wei, Y., Weng, D., Yang, Y., Zhang, X., Jiang, K., Liu, L., and Fan, S.: Efficient fabrication of field electron emitters from the multiwalled carbon nanotube yarns. Appl. Phys. Lett. 89, 063101 (2006).CrossRefGoogle Scholar
Chen, G., Shin, D.H., Roth, S., and Lee, C.J.: Field emission characteristics of point emitters fabricated by a multiwalled carbon nanotube yarn. Nanotechnology 20, 315201 (2009).CrossRefGoogle ScholarPubMed
Shiffler, D., Fairchild, S., Tang, W., Maruyama, B., Golby, K., LaCour, M., Pasquali, M., and Lockwood, N.: Demonstration of an acid-spun single-walled nanotube fiber cathode. IEEE Trans. Plasma Sci. 40, 1871 (2012).CrossRefGoogle Scholar
Guglielmotti, V., Tamburri, E., Orlanducci, S., Terranova, M.L., Rossi, M., Notarianni, M., Fairchild, S.B., Maruyama, B., Behabtu, N., Young, C.C., and Pasquali, M.: Macroscopic self-standing SWCNT fibres as efficient electron emitters with very high emission current for robust cold cathodes. Carbon 52, 356 (2013).CrossRefGoogle Scholar
Fairchild, S.B., Back, T.C., Ferguson, J.B., Boeckl, J., Koemer, H., Maruyama, B., Lange, M., Lockwood, N.P., Cahay, M.M., Behabtu, N., Young, C.C., Averett, K., Murray, P.T., and Pasquali, M.: Morphology dependent field emission of carbon nanotube fibers. Adv. Funct. Mater. (2013, submitted).Google Scholar
Li, C., Zhang, Y., Cole, M.T., Shivareddy, S.G., Barnard, J.S., Lei, W., Wang, B., Pribat, D., Amaratunga, G.A.J., and Milne, W.I.: Hot electron field emission via individually transistor-ballasted carbon nanotube arrays. ACS Nano 6, 3236 (2012).CrossRefGoogle ScholarPubMed
Kim, W.J., Lee, J.S., Song, K.Y., Chu, C.N., and Kim, Y.H.: Better than 10 mA field emission from an isolated structure emitter of a metal oxide/CNT composite. ACS Nano 5, 429 (2011).CrossRefGoogle ScholarPubMed
Dean, K.A., Groening, O., Kuttel, O.M., and Schlapbach, L.: Nanotube electronic states observed with thermal field emission electron spectroscopy. Appl. Phys. Lett. 75, 2773 (1999).CrossRefGoogle Scholar
Murray, P.T., Back, T.C., Cahay, M.M., Fairchild, S.B., Maruyama, B., Lockwood, N.P., and Pasquali, M.: Evidence for adsorbate-enhanced field emission from carbon nanotube fibers. Appl. Phys. Lett. 103, 053113 (2013).CrossRefGoogle Scholar
Jensen, K.L.: Scattering and the relationship between quantum efficiency and emittance. J. Appl. Phys. 113, 056101 (2013).CrossRefGoogle Scholar
Jensen, K.L.: Space charge, emittance, trajectories, and the modeling of field emitter arrays. J. Vac. Sci. Technol. B 29, 02B101 (2011).CrossRefGoogle Scholar
Nilsson, L., Groening, O., Emmenegger, C., Kuettel, O., Schaller, E., Schlapbach, L., Kind, H., Bonard, J-M., and Kern, K.: Scanning field emission from patterned carbon nanotube films. Appl. Phys. Lett. 76, 2071 (2000).CrossRefGoogle Scholar
Bonard, J-M., Stöckli, T., Maier, F., de Heer, W.A., Châtelain, A., Salvetat, J-P., and Forró, L.: Field-emission-induced luminescence from carbon nanotubes. Phys. Rev. Lett. 81, 1441 (1998).CrossRefGoogle Scholar
Child, C.D.: Discharge from hot CaO. Phys. Rev. (Series I) 32, 492 (1911).CrossRefGoogle Scholar
Langmuir, I.: The effect of space charge and initial velocities on the potential distribution and thermionic current between parallel plane electrodes. Phys. Rev. 21, 419 (1923).CrossRefGoogle Scholar
Cahay, M.M., Murray, P.T., Back, T.C., Gruen, G.J., Fairchild, S.B., Boeckl, J., Bulmer, J., and Koziol, K.K.: Hysteresis during field emission from carbon nanotube fibers synthesized by chemical vapor deposition. Nano Lett. (2013, submitted).Google Scholar
Dean, K.A., von Allmen, P., and Chalamala, B.R.: Three behavioral states observed in field emission from single-walled carbon nanotubes. J. Vac. Sci. Technol. B 17, 1959 (1999).CrossRefGoogle Scholar
Ryu, J.H., Bae, N.Y., Oh, H.M., Zhou, O., Jang, J., and Park, K.C.: Stabilized electron emission from silicon coated carbon nanotubes for a high-performance electron source. J. Vac. Sci. Technol. B 29, 02B120 (2011).CrossRefGoogle Scholar
Li, C., Zhang, Y., Mann, M., Hasko, D., Lei, W., Wang, B., Chu, D., Pribat, D., Amaratunga, G.A.J., and Milne, W.I.: High emission current density, vertically aligned carbon nanotube mesh, field emitter array. Appl. Phys. Lett. 97, 113107 (2010).CrossRefGoogle Scholar