Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T18:38:39.927Z Has data issue: false hasContentIssue false

Favored composition region for metallic glass formation and atomic configurations in the ternary Ni–Zr–Ti system derived from n-body potential through molecular dynamics simulations

Published online by Cambridge University Press:  01 July 2011

S.Z. Zhao
Affiliation:
Department of Materials Science and Engineering, Advanced Materials Laboratory, Tsinghua University, Beijing 100084, China
J.H. Li
Affiliation:
Department of Materials Science and Engineering, Advanced Materials Laboratory, Tsinghua University, Beijing 100084, China
B.X. Liu*
Affiliation:
Department of Materials Science and Engineering, Advanced Materials Laboratory, Tsinghua University, Beijing 100084, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

An atomistic scheme is developed based on constructed n-body potential to investigate the glass-forming composition region and atomic configurations in Ni–Zr–Ti system. The glass-forming ranges derived from the n-body potentials through molecular dynamics simulations for the binary Ni–Zr, Ni–Ti, Zr–Ti, and ternary Ni–Zr–Ti systems turns out to be very compatible with theoretical studies and experimental observations. Moreover, the coordination numbers (CNs), microchemical inhomogeneity parameter, and Honeycutt and Anderson pair analysis are also computed to exam the local atomic configurations during crystal-to-amorphous phase transition. It is found that average total CNs of amorphous phases are significantly larger compared with those in solid solution counterparts, owing to the increased fractions of CNs from 13 to 16. A tendency in forming the chemical short-range orders also exists in binary and ternary metallic glasses in the Ni–Zr–Ti system and icosahedra-related atomic configurations play important role in forming those orders.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Klement, W., Willens, R.H., and Duwez, P.: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960).CrossRefGoogle Scholar
2.Inoue, A. and Takeuchi, A.: Recent progress in bulk glassy alloys. Mater. Trans. 43, 1892 (2002).CrossRefGoogle Scholar
3.Kelton, K.F. and Gibbons, P.C.: Hydrogen storage in quasicrystals. MRS Bull. 22, 69 (1997).CrossRefGoogle Scholar
4.Viano, A.M., Majzoub, E.H., Stroud, R.M., Kramer, M.J., Misture, S.T., Gibbons, P.C., and Kelton, K.F.: Hydrogen absorption and storage in quasicrystalline and related Ti-Zr-Ni alloys. Philos. Mag. A 78, 131 (1998).CrossRefGoogle Scholar
5.Konstanchuk, I.G., Ivanov, E.Y., Bokhonov, B.B., and Boldyrev, V.V.: Hydriding properties of mechanically alloyed icosahedral phase TiB45BZrB38BNiB17B. J. Alloy. Comp. 319, 290 (2001).CrossRefGoogle Scholar
6.Meisner, L.L., Sivokha, V.P., and Perevalova, O.B.: Formation features of fine structure of the NiB50BTiB40BZrB10B alloy under different thermal treatment. Phys. B 262, 49 (1999).CrossRefGoogle Scholar
7.Hsieh, S.F. and Wu, S.K.: A study on ternary Ti-rich TiNiZr shape memory alloys. Mater. Charact. 41, 151 (1998).CrossRefGoogle Scholar
8.Firstov, G.S., Humbeeck, J.V., and Koval, Y.N.: High-temperature shape-memory alloys: Some recent developments. Mater. Sci. Eng., A 378, 2 (2004).CrossRefGoogle Scholar
9.Boer, F.R.D., Boom, R., Matterns, W.C.M., Miedema, A.R., and Niessen, A.K.: Cohesion in metals: Transition Metal Alloys (North-Holland, Amsterdam, 1989).Google Scholar
10.Inoue, A.: Bulk Amorphous Alloys: Preparation and Fundamental Characteristics (Trans Tech Publication Ltd., Switzerland, 1998).Google Scholar
11.Elliott, S.R.: Physics of Amorphous Materials (Longman, London, 1984).Google Scholar
12.Ulmann, D.R.: A kinetic treatment of glass formation. J. Non-Cryst. Solids 7(4), 337 (1972).CrossRefGoogle Scholar
13.Davies, H.A.: Formation of metallic glasses. Phys. Chem. Glasses 17(5), 159 (1976).Google Scholar
14.Lu, Z.P. and Liu, C.T.: Glass formation criterion for various glass-forming systems. Phys. Rev. Lett. 91(11), 115505 (2003).CrossRefGoogle ScholarPubMed
15.Lu, Z.P. and Liu, C.T.: A new approach to understanding and measuring glass formation in bulk amorphous materials. Intermetallics 12(10-11), 1035 (2004).CrossRefGoogle Scholar
16.Li, J.H., Dai, Y., Cui, Y.Y., and Liu, B.X.: Atomistic theory for predicting the binary metallic glass formation. Mater. Sci. Eng., R 72, 1 (2010).CrossRefGoogle Scholar
17.Liu, B.X., Lai, W.S., and Zhang, Q.: Irradiation induced amorphization in metallic multilayers and calculation of glass-forming ability from atomistic potential in the binary metal systems. Mater. Sci. Eng., R 29(1-2), 1 (2000).CrossRefGoogle Scholar
18.Li, J.H., Dai, X.D., Liang, S.H., Tai, K.P., Kong, Y., and Liu, B.X.: Interatomic potentials of the binary transition metal systems and some applications in materials physics. Phys. Rep. 455(1-3), 1 (2008).CrossRefGoogle Scholar
19.Turnbull, D.: Amorphous solid formation and interstitial solution behavior in metallic alloy systems. J. de Physique 35, C4.1 (1974).Google Scholar
20.Egami, T. and Waseda, Y.: Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).CrossRefGoogle Scholar
21.Weeber, A.W. and Bakker, H.: Extension of the glass-forming range of Ni-Zr by mechanical alloying. J. Phys. F: Met. Phys. 18, 1359 (1988).CrossRefGoogle Scholar
22.Bormann, R., Gartner, F., and Zoltzer, K.: Application of the CALPHAD method for the prediction of amorphous phase formation. J. Less Common Met. 145, 19 (1988).CrossRefGoogle Scholar
23.Dai, X.D., Li, J.H., and Liu, B.X.: The metallic glass-forming region of a ternary metal system predicted by interatomic potential through molecular dynamics simulation. Scr. Mater. 57, 161 (2007).CrossRefGoogle Scholar
24.Dai, Y., Li, J.H., Che, X.L., and Liu, B.X.: Glass-forming region of the Ni-Nb-Ta ternary metal system determined directly from n-body potential through molecular dynamics simulations. J. Mater. Res. 24, 1815 (2009).CrossRefGoogle Scholar
25.Zhao, S.Z., Li, J.H., and Liu, B.X.: Formation of the Ni–Zr–Al ternary metallic glasses investigated by interatomic potential through molecular dynamic simulation. J. Phys. Soc. Jpn. 79, 064607 (2010).CrossRefGoogle Scholar
26.Chen, G.L., Hui, X.D., He, G., and Bian, Z.: Multicomponent chemical short range order undercooling and the formation of bulk metallic glasses. Mater. Trans. 42, 1095 (2001).CrossRefGoogle Scholar
27.Finney, J.L. and Wallace, J.: Interstice correlation functions; a new, sensitive characterisation of non-crystalline packed structures. J. Non-Cryst. Solids 43, 165 (1981).CrossRefGoogle Scholar
28.Gazzillo, D., Pastore, G., and Enzo, S.: Chemical short-range order in amorpous Ni-Ti alloys—an integral-equation approach with a non-additive hard-sphere model. J. Phys. Condens. Matter 1, 3469 (1989).CrossRefGoogle Scholar
29.Li, J.H., Kong, L.T., and Liu, B.X.: Proposed definition of microchemical inhomogeneity and application To characterize some selected miscible/immiscible binary metal systems. J. Phys. Chem. B 108, 16071 (2004).CrossRefGoogle Scholar
30.Li, J.H., Dai, X.D., Wang, T.L. and Liu, B.X.: A binomial truncation function proposed for the second-moment approximation of tight-binding potential and application in the ternary Ni-Hf-Ti system. J. Phys. Condens. Matter 19, 086228/086221 (2007).CrossRefGoogle Scholar
31.Honeycutt, J.D. and Anderson, H.C.: Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950 (1987).CrossRefGoogle Scholar
32.Cleri, F. and Rosato, V.: Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48, 22 (1993).CrossRefGoogle ScholarPubMed
33.Cai, J. and Ye, Y.Y.: Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys. Phys. Rev. B 54, 8398 (1996).CrossRefGoogle ScholarPubMed
34.Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
35.Segall, M.D., Lindan, P.L.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J., and Payne, M.C.: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002).CrossRefGoogle Scholar
36.Perdew, J.P. and Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).CrossRefGoogle ScholarPubMed
37.Perdew, J.P.: Generalized gradient approximations for exchange and correlation –a look backward and forward. Physica B 172, 1 (1991).CrossRefGoogle Scholar
38.Parrinello, M. and Rahman, A.: Polymorphic transitions in single-crystals—a new molecular-dynamics method. J. Appl. Phys. 52, 7182 (1981).CrossRefGoogle Scholar
39.Allen, M.P. and Tildesley, D.J.: Computer Simulation of Liquids (Oxford University Press, London, 1987).Google Scholar
40.Zhao, S.Z., Li, J.H., and Liu, B.X.: Local structure of the Zr-Al metallic glasses studied by proposed n-body potential through molecular dynamics simulation. J. Mater. Res. 25, 1679 (2010).CrossRefGoogle Scholar
41.Kittel, C.: Introduction to Solid State Physics (John Wiley & Sons, New York, 1996).Google Scholar
42.Brandes, E.A. and Brook, G.B.: Smithells Metals Reference Book (Butterworth-Heinemann, Oxford, 1992).Google Scholar
43.Becle, C., Bourniquel, B., Develey, G., and Saillard, M.: Intermetallic compound NiB3BZr. J. Less Common Met. 66, 59 (1979).CrossRefGoogle Scholar
44.Da, J.M., Oliveira, C.B., and Harris, I.R.: Valency compensation in the Laves system, Ce(CoB1−BxNix)B2B. J. Mater. Sci. 18, 3649 (1983).Google Scholar
45.Bououdina, M., Lambert-Andron, B., Ouladdiaf, B., Pairis, S., and Fruchart, D.: Structural investigations by neutron diffraction of equi-atomic Zr–Ti(V)–Ni(Co) compounds and their related hydrides. J. Alloy. Comp. 356, 54 (2003).CrossRefGoogle Scholar
46.Havinga, E.E., Damsma, H., and Hokkeling, P.: Compouds and pseudo-binary alloys with CuAlB2B(C16)-type structure.1. Preparation and x-ray results. J. Less Common Met. 27, 169 (1972).CrossRefGoogle Scholar
47.Laves, F. and Wallbaum, H.H.: The crystal structure of NiB3BTi and SiB2BTi—(Two new types). Z. Kristallogr. 101, 78 (1939).CrossRefGoogle Scholar
48.Purdy, G.R. and Parr, J.G.: A study of the titanium-nickel system between TiB2BNi and TiNi. Trans. Metall. Soc. AIME 221, 636 (1961).Google Scholar
49.Mueller, M.H. and Knott, H.W.: Crystal structures of TiB2BCu, TiB2BNi, TiB4BNiB2BO and TiB4BCuB2BO. Trans. Metall. Soc. AIME 227, 674 (1963).Google Scholar
50.Villars, P. and Calvert, L.D.: Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1997).Google Scholar
51.Lai, W.S., Li, Q., Lin, C., and Liu, B.X.: Critical solid solubility of the Ni–Ti system determined by molecular dynamics simulation and ion mixing. Phys. Status Solidi B 227, 503 (2001).3.0.CO;2-3>CrossRefGoogle Scholar
52.Eckert, J., Schults, L., Hellstern, E., and Urban, K.: Glass-forming range in mechanically alloyed Ni-Zr and the influence of the milling intensity. J. Appl. Phys. 64, 3224 (1988).CrossRefGoogle Scholar
53.Buschow, K.H.J. and Beekmans, N.M.: Formation, decomposition, and electrical transport properties of amorphous Hf-Ni and Hf-Co alloys. J. Appl. Phys. 50, 6348 (1979).CrossRefGoogle Scholar
54.Buschow, K.H.J.: Short-range order and thermal-stability in amorphous-alloys. J. Phys. F: Met. Phys. 14, 593 (1984).CrossRefGoogle Scholar
55.Schwarz, R.B., Petrich, R.R., and Saw, C.K.: The synthesis of amorphous Ni-Ti alloy powders by mechanical alloying. J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
56.De Tendler, R.H., Rodriguez, C., Gallego, L.J., and Alonso, J.A.: Free-energies of the Ti-Ni, Fe-Ni and Mo-Ni alloys in relation to their behaviour under particle irradiation. J. Mater. Sci. 31, 6395 (1996).CrossRefGoogle Scholar
57.Lai, W.S. and Liu, B.X.: Lattice stability of some Ni-Ti alloy phases versus their chemical composition and disordering. J. Phys. Condens. Matter 12, L53 (2000).CrossRefGoogle Scholar
58.Gallego, L.J., Somoza, J.A., Alonso, J.A., and Lopez, J.M.: Prediction of the glass formation range of transition metal alloys. J. Phys. F: Met. Phys. 18, 2149 (1988).CrossRefGoogle Scholar
59.Lee, J.K., Kim, W.T., and Kim, D.H.: Effects of Pd addition on the glass forming ability and crystallization behavior in the Ni-Zr-Ti alloys. Mater. Lett. 57, 1514 (2003).CrossRefGoogle Scholar
60.Liu, X.J., Hui, X.D., Hou, H.Y., Liu, T., and Chen, G.L.: Chemical short-range order in ZrB2BNi amorphous alloy. Phys. Lett. A 372, 3313 (2008).CrossRefGoogle Scholar
61.Basu, J., Louzguine, D.V., Inoue, A. and Ranganathan, S.: Synthesis and devitrification of glassy Zr–Ti–Ni and Zr–Hf–Ni ternary alloys. J. Non-Cryst. Solids 334335, 270 (2004).CrossRefGoogle Scholar
62.Park, T.G., Yi, S., and Kim, D.H.: Development of new Ni-based amorphous alloys containing no metalloid that have large undercooled liquid regions. Scr. Mater. 43, 109 (2000).CrossRefGoogle Scholar
63.Kocjan, A., McGuiness, P.J., Linaric, M.R., and Kobe, S.: Amorphous-to-quasicrystalline transformations in the Ti–Zr–Ni and Ti–Hf–Ni systems. J. Alloy. Comp. 457, 144 (2008).CrossRefGoogle Scholar
64.Inoue, S., Sawada, N., and Namazu, T.: Effect of Zr content on mechanical properties of Ti–Ni–Zr shape memory alloy films prepared by dc magnetron sputtering. Vacuum 83, 664 (2009).CrossRefGoogle Scholar
65.Kim, H.Y., Mizutani, M., and Miyazaki, S.: Crystallization process and shape memory properties of Ti–Ni–Zr thin films. Acta Mater. 57, 1920 (2009).CrossRefGoogle Scholar
66.Saida, J., Imafuku, M., Sato, S., Sanada, T., Matsubara, E., and Inoue, A.: Correlation between local structure and stability of supercooled liquid state in Zr-based metallic glasses. Mater. Sci. Eng., A 449451, 90 (2007).CrossRefGoogle Scholar