Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T21:13:43.284Z Has data issue: false hasContentIssue false

Fatigue failure in Pb–Sn–Ag alloy during plastic deformation: A 3D-SIMS imaging study

Published online by Cambridge University Press:  31 January 2011

Antonino Scandurra
Affiliation:
CNR–Istituto di Metodologie e Tecnologie per la Microelettronica, viale A. Doria 6, Catania, Italy
Antonino Licciardello
Affiliation:
Consorzio Catania Ricerche, viale A. Doria 6, Catania, Italy
Alberto Torrisi
Affiliation:
Dipartimento di Scienze Chimiche dell' Università, viale A. Doria 6, Catania 95125, Italy
Antonio La Mantia
Affiliation:
SGS–Thomson Microelectronics, Stradale Primosole 50, Catania, Italy
Orazio Puglisi
Affiliation:
Dipartimento di Scienze Chimiche dell' Università, viale A. Doria 6, Catania 95125, Italy
Get access

Abstract

Three-dimensional chemical maps by Secondary Ion Mass Spectrometry (3D-SIMS), XPS spectroscopy, and SEM-EDAX microscopy were employed in order to investigate the effects of accelerated fatigue tests on crack formation in 95.5% Pb–2% Sn–2.5% Ag and 95% Pb–5% Sn solder joints. These alloys are used in the die bonding of electronic power device assemblies. The results show that cracks form by Sn-depletion from the inner regions of the soldered joint. Simultaneously, there is a recrystallization of the Pb-rich phase in the same regions of the joint. The crack occurs at a critical number of cycles when a Sn-depleted region is formed, yielding weaker inner layers with lower shear strength. A possible explanation of the Sn-depletion is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Frear, D., Grivas, D., Quan, L., and Morris, J. W., in Electronic Packaging Materials Science II, edited by Jackson, K. A., Pohanka, R. C., Uhlmann, D. R., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 72, Pittsburgh, PA, 1986), p. 181.Google Scholar
2.Hall, P. M., IEEE Trans, on Comp. Hybrids and Manuf. Technol. CHMT-7, 314 (1984).CrossRefGoogle Scholar
3.Fox, L. R., Sofia, J.W., and Shine, M. C., IEEE Trans, on Comp. Hybrids and Manuf. Technol. CHMT-8, 275 (1985).Google Scholar
4.O'lock, G.D., Jr., Peters, M.S., Pater, J.R., Kleese, G.A., and Martini, R. V., IEEE Trans, on Comp. Hybrids and Manuf. Technol. CHMT-10, 82 (1987).Google Scholar
5.Frear, D., Grivas, D., McCormack, M., Tribula, D., and Morris, J. W., Jr., in Electronic Packaging and Corrosion in Microelectronics, Proc. ASM's Third Conf. on Electronic Packaging, Minneapolis, edited by Nicholson, M.E. (ASM INTERNATIONAL, Metals Park, OH, 1987), p. 269.Google Scholar
6.Inoue, H., Kurihara, Y., and Hachino, H., IEEE Trans, on Comp Hybrids and Manuf. Technol. CHMT-9, 190 (1986).CrossRefGoogle Scholar
7.Frost, H. J., Lavery, P. R., and Lutender, S. D., in Electronic Packaging and Corrosion in Microelectronics, Proc. ASM's Third Conf. on Electronic Packaging, Minneapolis, edited by Nicholson, M. E. (ASM INTERNATIONAL, Metals Park, OH, 1987), p. 259.Google Scholar
8.Solomon, H. D., IEEE Trans, on Comp. Hybrids and Manuf. Technol. CHMT-9, 4 (1986).Google Scholar
9.Petzow, G. and Effemberg, G., Ternary Alloys (VCH, Weinheim, 1988), Vol. 2, p. 464.Google Scholar
10.Scandurra, A., Torrisi, A., Spoto, G., Fragala, I., and Puglisi, O., work in preparation.Google Scholar
11.Opila, R.L., Vac, J.. Sci. Technol. A 4 (2), 173 (1986).Google Scholar
12.Konetzki, R. A. and Chang, Y.A., Mater, J.. Res. 3, 466 (1988).Google Scholar
13.Konetzki, R. A., Chang, Y. A., and Marcotte, V. C., Mater, J.. Res. 4, 1421 (1989).Google Scholar
14.Manko, H.H., Solder and Soldering (McGraw-Hill, New York, 1979), 2nd ed., p. 104.Google Scholar
15.Stauffer, D., Introduction to Percolation Theory (Taylor and Francis, London, 1985).Google Scholar
16.Oberschmidt, J., Kim, K. K., and Gupta, D., J. Appl. Phys. 53 (8), 5672 (1982).CrossRefGoogle Scholar
17.Marwick, A.D., Piller, R.C., and Sivell, P.M., J. Nucl. Mater. 83, 36 (1979) and references therein.CrossRefGoogle Scholar
18.Earn, E.J., Mechanics of Materials (Pergamon Press, Oxford, 1977), p. 137.Google Scholar
19.Kitano, M., Shimizu, T., Kumazawa, T., and Ito, Y., in Statistical Research on Fatigue and Fracture, edited by Tanaka, T. (Elsevier Applied Science, London, 1987), p. 235.Google Scholar