Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T13:15:53.432Z Has data issue: false hasContentIssue false

Failure behavior of alumina and alumina/silicon carbide nanocomposites with natural and artificial flaws

Published online by Cambridge University Press:  31 January 2011

F. Meschke*
Affiliation:
Advanced Ceramics Group, Technische Universität Hamburg-Harburg, 21073 Hamburg, Germany
P. Alves-Riccardo
Affiliation:
Advanced Ceramics Group, Technische Universität Hamburg-Harburg, 21073 Hamburg, Germany
G. A. Schneider
Affiliation:
Advanced Ceramics Group, Technische Universität Hamburg-Harburg, 21073 Hamburg, Germany
N. Claussen
Affiliation:
Advanced Ceramics Group, Technische Universität Hamburg-Harburg, 21073 Hamburg, Germany
*
a)Author, who should be addressed for correspondence, is now with Lehigh University, Materials Research Center, 5E Whitaker Laboratory, Bethlehem 18015, Pennsylvania. E-mail: [email protected].
Get access

Abstract

Alumina/silicon carbide nanocomposites with 5 vol.% SiC nanoparticles were produced by slip casting, pressureless sintering, and hot isostatic pressing. The grain size dependence of both the bend strength and fracture toughness have been investigated. The strength exceeds 1 GPa at a grain size of 1.7 μm. Crack opening displacements (COD) were measured, revealing that crack tip toughness is considerably lower than in pure alumina and an R-curve behavior is unlikely to occur. By introducing artificial pores with a size of 60 μm, the micromechanical fracture process has been studied in both pure alumina and nanocomposites. In contrast to alumina, where an annular precrack forms prior to fracture, it is suggested that precrack formation is strongly impeded in the nanocomposites and failure is controlled by microcrack initiation. The high strength of Al2O3/SiC nanocomposites seems to be the result of an unusually high crack initiation stress.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Niihara, K., J. Ceram. Soc. Jpn. int. ed. 99, 945952 (1991).CrossRefGoogle Scholar
2.Zhao, J., Stearns, L. C., Harmer, M. P., Chan, H. M., and Miller, G. A., J. Am. Ceram. Soc. 76 (2), 503510 (1993).CrossRefGoogle Scholar
3.Stearns, L. C., Zhao, J., and Harmer, M. P., J. Eur. Ceram. Soc. 10, 473477 (1992).CrossRefGoogle Scholar
4.Levin, I., Kaplan, W. D., and Brandon, D. G., Acta metall. mater. 42 (4), 11471154 (1994).CrossRefGoogle Scholar
5.Otsuka, J., Iio, S., Tajima, Y., Watanabe, M., and Tanaka, K., J. Ceram. Soc. Jpn., Jpn. ed. 102 (1), 2934 (1994).CrossRefGoogle Scholar
6.Ohji, T., Hirano, T., Nakahira, A., and Niihara, K., J. Am. Ceram. Soc. 79, 3345 (1996).CrossRefGoogle Scholar
7.Ohji, T., Ceramic Engineering & Science Proceedings (The American Ceramic Society, Westerville, OH, 1997), Vol. 18, Issue 3, pp. 187194.Google Scholar
8.Carroll, L., Sternitzke, M., and Derby, B., Acta Metall. 44 (11), 45434552 (1996).Google Scholar
9.Walker, C. N., Borsa, C. E., Davidge, R. I. Todd and Brook, R. J., Brit. Ceram. Proc. 53, 249264 (1994).Google Scholar
10.Pezzotti, G., Sergo, V., Ota, K., Sbaizero, O., Muraki, N., Nishida, T., and Sakai, M., J. Ceram. Soc. Jpn. 104 (6), 497503 (1996).CrossRefGoogle Scholar
11.Fang, J., Chan, H. M., and Harmer, M. P., Mater. Sci. Eng. A195, 163167 (1995).CrossRefGoogle Scholar
12.Chou, I. A., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 79 (9), 24032409 (1996).CrossRefGoogle Scholar
13.Hoffman, M. and Rödel, J., unpublished.Google Scholar
14.Wakayama, S. and Nishimura, H., Fracture Mechanics of Ceramics, edited by Bradt, R. C.et al. (Plenum Press, New York, 1992), pp. 5972.CrossRefGoogle Scholar
15.Krell, A., Teresiak, A., and Schläfer, D., J. Eur. Ceram. Soc. 16, 803811 (1996).CrossRefGoogle Scholar
16.Baratta, F. I., J. Am. Ceram. Soc. 61 (11–12), 490–494 (1978).CrossRefGoogle Scholar
17.Nishida, T., Shiono, T., Nagai, A., and Nishikawa, T., J. Ceram. Jpn. int. ed. 96, 597602 (1988).Google Scholar
18.Nose, T. and Fujii, T., J. Am. Ceram. Soc. 71 (5), 328333 (1988).CrossRefGoogle Scholar
19. DIN 51109, Beuth Verlag, Berlin (1991).Google Scholar
20.Anstis, G. R., Chantikul, P., Lawn, B. R., and Marshall, D. B., J. Am. Ceram. Soc. 64 (9), 533539 (1981).CrossRefGoogle Scholar
21.Lawn, B., Fracture of Brittle Solids (Cambridge University Press, 1995).Google Scholar
22.Oda, K., Mizuta, H., Shibasaki, Y., Maeda, M., Machida, M., and Oshima, K., Hot Isostatic Pressing, edited by Koizumi, M. (Elsevier, Amsterdam, 1992), pp. 9195.CrossRefGoogle Scholar
23.Claussen, N., Janssen, R., and Holz, D., J. Ceram. Soc. Jpn. 103 (8), 749758 (1995).CrossRefGoogle Scholar
24.Seidel, J. and Rödel, J., J. Am. Ceram. Soc. 80 (2), 433438 (1997).CrossRefGoogle Scholar
25.Steinbrech, R. W., Reichl, A., and Schaarwächter, W., J. Am. Ceram. Soc. 73, 20092015 (1990).CrossRefGoogle Scholar
26.Seidel, J., Claussen, N. and Rödel, J., J. Eur. Ceram. Soc. 15, 395404 (1995).CrossRefGoogle Scholar