Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T14:47:39.145Z Has data issue: false hasContentIssue false

Facet-selective growth and optical properties of CdTe/CdSe tetrapod-shaped nanocrystal heterostructures

Published online by Cambridge University Press:  12 July 2011

Roman B. Vasiliev*
Affiliation:
Department of Materials Science, Moscow State University, Leninskie Gory, Moscow 119991, Russia
Dmitry N. Dirin
Affiliation:
Department of Materials Science, Moscow State University, Leninskie Gory, Moscow 119991, Russia
Maria S. Sokolikova
Affiliation:
Department of Materials Science, Moscow State University, Leninskie Gory, Moscow 119991, Russia
Vladimir V. Roddatis
Affiliation:
Russian Research Centre “Kurchatov Institute,” Moscow 123182, Russia
Alexander L. Vasiliev
Affiliation:
Russian Research Centre “Kurchatov Institute,” Moscow 123182, Russia
Alexei G. Vitukhnovsky
Affiliation:
Department of Luminescence, Lebedev Physical Institute, Moscow 119991, Russia
Alexander M. Gaskov
Affiliation:
Department of Chemistry, Moscow State University, Leninskie Gory, Moscow 119991, Russia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Selective CdSe tip growth on CdTe tetrapod-shaped colloidal seeds has been achieved for a Cd:surfactant molar ratio of 1:2, where surfactant is oleic acid. The average length of tetrapod arms increased from 12 to 21 nm while arm width remained constant of 3 nm. Formation of CdSe tips shifts the excitonic absorption maximum to the near-infrared region and the appearance of low-intensity absorption feature corresponding to a charge-transfer band. At the same time, luminescence band splits into a narrow (about 100 meV width) CdTe excitonic subband and a 230-meV-wide charge-transfer subband, with splitting energy increasing up to 260 meV depending on CdSe tip length. The intensity ratio of charge transfer to excitonic luminescence increases exponentially with splitting energy rise. Considerable modification of the photoluminescence spectrum has been observed with temperature variation in the range of 10–60 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murray, C.B., Norris, D.J., and Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706 (1993).CrossRefGoogle Scholar
2.Yin, Y. and Alivisatos, A.P.: Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664 (2005).CrossRefGoogle ScholarPubMed
3.Milliron, D.J., Hughes, S.M., Cui, Y., Manna, L., Li, J., Wang, L-W., and Alivisatos, A.P.: Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430, 190 (2004).CrossRefGoogle ScholarPubMed
4.Manna, L., Scher, E.C., and Alivisatos, A.P.: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700 (2000).CrossRefGoogle Scholar
5.Kim, S., Fisher, B., Eisler, H-J., and Bawendi, M.: Type-II quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 125, 11466 (2003).CrossRefGoogle ScholarPubMed
6.Zhong, H. and Scholes, G.D.: Shape tuning of type II CdTe-CdSe colloidal nanocrystal heterostructures through seeded growth. J. Am. Chem. Soc. 131, 9170 (2009).CrossRefGoogle ScholarPubMed
7.Lee, H., Yoon, S.W., Ahn, J.P., Suh, Y.D., Lee, J.S., Lim, H., and Kim, D.: Synthesis of type II CdTe/CdSe heterostructure tetrapod nanocrystals for PV applications. Sol. Energy Mater. Sol. Cells 93, 779 (2009).CrossRefGoogle Scholar
8.Carbone, L. and Cozzoli, P.D.: Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 5, 449 (2010).CrossRefGoogle Scholar
9.Cozzoli, P.D., Pellegrino, T., and Manna, L.: Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 35, 1195 (2006).CrossRefGoogle ScholarPubMed
10.Kuno, M., Ahmad, O., Protasenko, V., Bacinello, D., and Kosel, Th.H.: Solution-based straight and branched CdTe nanowires. Chem. Mater. 18, 5722 (2006).CrossRefGoogle Scholar
11.Deka, S., Miszta, K., Dorfs, D., Genovese, A., Bertoni, G., and Manna, L.: Octapod-shaped colloidal nanocrystals of cadmium chalcogenides via “one-pot” cation exchange and seeded growth. Nano Lett. 10, 3770 (2010).CrossRefGoogle ScholarPubMed
12.Mokari, T., Rothenberg, E., Popov, I., Costi, R., and Banin, U.: Selective growth of metal tips onto semiconductor quantum rods and tetrapods. Science 304, 1787 (2004).CrossRefGoogle ScholarPubMed
13.Talapin, D.V., Nelson, J.H., Shevchenko, E.V., Aloni, Sh., Sadtler, B., and Alivisatos, A.P.: Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7, 2951 (2007).CrossRefGoogle ScholarPubMed
14.Kanaras, A.G., Sonnichsen, C., Liu, H., and Alivisatos, A.P.: Synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano Lett. 5, 2164 (2005).CrossRefGoogle ScholarPubMed
15.Ivanov, S.A., Nanda, J., Piryatinski, A., Achermann, M., Balet, L.P., Bezel, I.V., Anikeeva, P.O., Tretiak, S., and Klimov, V.I.: Light amplification using inverted core/shell nanocrystals: Towards lasing in the single-exciton regime. J. Phys. Chem. B 108, 10625 (2004).CrossRefGoogle Scholar
16.Piryatinski, A., Ivanov, S.A., Treiak, S., and Klimov, V.I.: Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor nanocrystals. Nano Lett. 7, 108 (2007).CrossRefGoogle ScholarPubMed
17.Dooley, C.J., Dimitrov, S.D., and Fiebig, T.: Ultrafast electron transfer dynamics in CdSe/CdTe donor-acceptor nanorods. J. Phys. Chem. C 112, 12074 (2008).CrossRefGoogle Scholar
18.He, J., Lo, S.S., Kim, J., and Scholes, G.D.: Control of exciton spin relaxation by electron-hole decoupling in type-II nanocrystal heterostructures. Nano Lett. 8, 4007 (2008).CrossRefGoogle ScholarPubMed
19.Scholes, G.D., Jones, M., and Kumar, S.: Energetics of photoinduced electron-transfer reactions decided by quantum confinement. J. Phys. Chem. C 111, 13777 (2007).CrossRefGoogle Scholar
20.Vasiliev, R.B., Dirin, D.N., and Gaskov, A.M.: Temperature effect on the growth of colloidal CdTe nanotetrapods. Mend. Comm. 19, 126 (2008).CrossRefGoogle Scholar
21.Vasiliev, R.B., Dirin, D.N., Sokolikova, M.S., Dorofeev, S.G., Vitukhnovsky, A.G., and Gaskov, A.M.: Growth of near-IR luminescent colloidal CdTe/CdS nanoheterostructures based on CdTe tetrapods. Mend. Comm. 19, 128 (2008).CrossRefGoogle Scholar
22.Dirin, D.N., Vasiliev, R.B., Sokolikova, M.S., and Gaskov, A.M.: Synthesis, morphology, and optical properties of colloidal CdTe/CdSe and CdTe/CdS nanoheterostructures based on CdTe tetrapods. Inorg. Mater. 47, 23 (2011).CrossRefGoogle Scholar
23.Fiore, A., Mastria, R., Lupo, M.G., Lanzani, G., Giannini, C., Carlino, E., Morello, G., De Giorgi, M., Li, Y., Cingolani, R., and Manna, L.: Tetrapod-shaped colloidal nanocrystals of II-VI semiconductors prepared by seeded growth. J. Am. Chem. Soc. 131, 2274 (2009).CrossRefGoogle ScholarPubMed
24.Peng, Z.A., and Peng, X.: Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 123, 1389 (2001).CrossRefGoogle Scholar
25.Manna, L., Milliron, D.J., Meisel, A., Scher, E.C., and Alivisatos, A.P.: Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2, 382 (2003).CrossRefGoogle ScholarPubMed
26.Yan, Y., Al-Jassim, M.M., Jones, K.M., Wei, S-H., and Zhang, S.B.: Observation and first-principles calculation of buried wurtzite phases in zinc-blende CdTe thin films. Appl. Phys. Lett. 77, 1461 (2000).CrossRefGoogle Scholar
27.Wei, S-H. and Zhang, S.B.: Structure stability and carrier localization in CdX (X=S, Se, Te) semiconductors. Phys. Rev. B 62, 6944 (2000).CrossRefGoogle Scholar
28.Donega, C.M. and Koole, R.: Size dependence of the spontaneous emission rate and absorption cross section of CdSe and CdTe quantum dots. J. Phys. Chem. 113, 6511 (2009).Google Scholar