Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T19:35:47.708Z Has data issue: false hasContentIssue false

Fabrication of tapered, conical-shaped titania nanotubes

Published online by Cambridge University Press:  31 January 2011

G.K. Mor
Affiliation:
Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Oomman K. Varghese
Affiliation:
Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Maggie Paulose
Affiliation:
Sentechbiomed Corporation, State College, Pennsylvania 16803
Niloy Mukherjee
Affiliation:
Sentechbiomed Corporation, State College, Pennsylvania 16803
Craig A. Grimes*
Affiliation:
Departments of Electrical Engineering and Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Using anodic oxidation with a time-dependent linearly varying anodization voltage, we have made films of tapered, conical-shaped titania nanotubes. The tapered, conical-shaped nanotubes were obtained by anodizing titanium foil in a 0.5% hydrofluoric acid electrolyte, with the anodization voltage linearly increased from 10-23 V at rates varying from 2.0-0.43 V/min. The linearly increasing anodization voltage results in a linearly increasing nanotube diameter, with the outcome being an array of conical-shaped nanotubes approximately 500 nm in length. Evidence provided by scanning electron-microscope images of the titanium substrate during the initial stages of the anodization process enabled us to propose a mechanism of nanotube formation.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lee, C.J., Lee, T.J., Lyu, S.C., Zhang, Y., Ruh, H., and Lee, H.J., Appl. Phys. Lett. 81, 3648 (2002).CrossRefGoogle Scholar
2.Frindell, K.K., Bartl, M.H., Popitsch, A., and Stucky, G.D., Angew. Chem. Int. Ed. 41, 960 (2002).3.0.CO;2-M>CrossRefGoogle Scholar
3.Varghese, O.K., Malhotra, L.K., and Sharma, G.L., Sensors Actuators B 55, 161 (1999).CrossRefGoogle Scholar
4.Chiang, Y.M., Lavik, E.B., Kosacki, I., Tuller, H.L., and Ying, J.Y., Appl. Phys. Lett. 69, 185 (1996).CrossRefGoogle Scholar
5.Lee, K.R., Kim, S.J., Song, J.S., Lee, J.H., Chung, Y.J., and Park, S., J. Am. Ceram. Soc. 85, 341 (2002).CrossRefGoogle Scholar
6.Khan, S.U.M. and Sultana, T., Solar Energy Mater. Solar Cells 76, 211 (2003).CrossRefGoogle Scholar
7.Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z., and Dickey, E.C., J. Mater. Res. 16, 3331 (2001).CrossRefGoogle Scholar
8.Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C., and Grimes, C.A., Adv. Mater. 15, 624 (2003).CrossRefGoogle Scholar
9.Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A., and Dickey, E.C., J. Mater. Res. 17, 1162 (2002).CrossRefGoogle Scholar
10.Dickey, E.C., Varghese, O.K., Ong, K., Paulose, M., and Grimes, C.A., Sensors 2, 91 (2002).CrossRefGoogle Scholar
11.Desai, T.A., Biomol. Eng. 17, 23 (2000).CrossRefGoogle Scholar
12.Chen, Q., Zhou, W., Du, G., and Peng, L., Adv. Mater. 14, 1208 (2002).3.0.CO;2-0>CrossRefGoogle Scholar
13.Zhang, M., Bando, Y., and Wada, K., J. Mater. Sci. Lett. 20, 167 (2001).CrossRefGoogle Scholar
14.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., Adv. Mater. 11, 1307, (1999).3.0.CO;2-H>CrossRefGoogle Scholar
15.Imai, H., Takei, Y., Shimizu, K., and Hirashima, H., J. Mater. Chem. 9, 2971 (1999).CrossRefGoogle Scholar
16Hoyer, P., Langmuir 12, 1141 (1996).CrossRefGoogle Scholar
17.Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A., and Dickey, E.C., J. Mater. Res. 18, 156 (2003).CrossRefGoogle Scholar
18.Choi, J., Sauer, G., Nielsch, K., Wehrspohn, R.B., and Gosele, U., Chem. Mater. 15, 776 (2003).CrossRefGoogle Scholar
19.Zwilling, V., Aucouturier, M., and Darque-Ceretti, E., Electrochim. Acta 45, 921 (1999).CrossRefGoogle Scholar
20.Ibrahim, M.A.M., Pongkao, D., and Yoshimura, M., J. Solid State Electrochem. 6, 341 (2002).CrossRefGoogle Scholar
21.Patermarakis, G. and Moussoutzanis, K., J. Electrochem. Soc. 142, 737 (1995).CrossRefGoogle Scholar
22.Patermarakis, G. and Karayannis, H.S., Electrochim. Acta 40, 2647 (1995).CrossRefGoogle Scholar
23.Parkhutik, V.P. and Shershulsky, V.I., J. Phys. D: Appl. Phys. 25, 1258 (1992).CrossRefGoogle Scholar
24.Macdonald, D.D., J. Electrochem. Soc. 140, L27 (1993).CrossRefGoogle Scholar
25.Diggle, J.W., Downie, T.C., and Goulding, C.W., Electrochim. Acta 15, 1079 (1970).CrossRefGoogle Scholar
26.Wood, G.C. and O'Sullivan, J.P., Electrochim. Acta 15, 1865 (1970).CrossRefGoogle Scholar
27.Patermarakis, G., Lenas, P., and Papayiannis, G., Electrochim. Acta 36, 709 (1991).CrossRefGoogle Scholar
28.Li, A.P., Müller, F., Birner, A., Nielsch, K., and Gösele, U., J. Appl. Phys. 84, 6023 (1998).CrossRefGoogle Scholar
29.Jessensky, O., Müller, F., and Gösele, U., Appl. Phys. Lett. 72, 1173 (1998).CrossRefGoogle Scholar
30.Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M.Y., and Aucouturier, M., Surf. Interface Anal. 27, 629 (1999).3.0.CO;2-0>CrossRefGoogle Scholar
31.Delplancke, J-L. and Winand, R., Electrochim. Acta 33, 1551 (1988).CrossRefGoogle Scholar
32.Sul, Y-T., Johansson, C.B., Jeong, Y., and Albrektsson, T., Med. Engg. Phys. 23, 329 (2001).CrossRefGoogle Scholar
33.Hwang, B.J. and Hwang, J.R., J. Appl. Electrochem. 23, 1056 (1993).CrossRefGoogle Scholar
34.Siejka, J. and Ortega, C., J. Electrochem. Soc.: Solid State Sci. Technol. 124, 883 (1977).CrossRefGoogle Scholar
35.Thompson, G.E., Thin Solid Films 297, 192 (1997).CrossRefGoogle Scholar
36.Pakes, A., Thompson, G.E., Skeldon, P., and Morgan, P.C., Corros. Sci. 45, 1275 (2003).CrossRefGoogle Scholar