Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T21:19:40.516Z Has data issue: false hasContentIssue false

Fabrication of polyelectrolyte microspheres using porous manganese carbonate as sacrificial template for drug delivery application

Published online by Cambridge University Press:  12 March 2019

Alexandro da Silva Abreu
Affiliation:
Organic Synthesis Laboratory, Research and Development Institute—IPD, Vale do Paraíba University, São José dos Campos 12244-000, Brazil
Janicy Arantes Carvalho
Affiliation:
Organic Synthesis Laboratory, Research and Development Institute—IPD, Vale do Paraíba University, São José dos Campos 12244-000, Brazil
Antonio Claudio Tedesco
Affiliation:
Departament of Chemistry, Center of Nanotechnology and Tissue Engineering- Photobiology and Photomedicine (CNET), University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
Milton Beltrame Junior
Affiliation:
Organic Synthesis Laboratory, Research and Development Institute—IPD, Vale do Paraíba University, São José dos Campos 12244-000, Brazil
Andreza Ribeiro Simioni*
Affiliation:
Organic Synthesis Laboratory, Research and Development Institute—IPD, Vale do Paraíba University, São José dos Campos 12244-000, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This paper describes the fabrication of polyelectrolyte microspheres using porous manganese carbonate as a sacrificial template for entrapped photosensitizer (PS) drugs for photodynamic therapy application. These particles were used as templates for polyelectrolyte layer-by-layer assembly (Lbl) of two oppositely charged polyelectrolytes: poly(styrene sulfonate) and poly(allylamine hydrochloride). When the polyelectrolyte multilayer shell was built around the MnCO3 core by the Lbl protocol and the core was extracted with acid solution and EDTA, the resultant assembly consisted of hollow polyelectrolyte spheres. Chloroaluminum phthalocyanine was chosen as the model drug to load into the hollow spheres. All the spectroscopic results presented showed excellent photophysical parameters of the studied drug. The fabrication of polyelectrolyte hollow spheres can be used as an optimal medium for a variety of bioactive materials, which can also be encapsulated by the proposed method.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahmse, H. and Hamblin, M.R.: New photosensitizers for photodynamic therapy. Biochem. J. 473, 347 (2016).CrossRefGoogle Scholar
Avci, P., Erdem, S.S., and Hamblin, M.R.: Photodynamic therapy: One step ahead with self-assembled nanoparticles. J. Biomed. Nanotechnol. 10, 1937 (2014).CrossRefGoogle ScholarPubMed
Calixto, G.M.F., Bernegossi, J., Freitas, L.M., Fontana, C.R., and Chorilli, M.: Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review. Molecules 21, 342 (2016).CrossRefGoogle ScholarPubMed
Mroz, P., Hashmi, J.T., Huang, Y., Lange, Y., and Hamblin, M.R.: Stimulation of anti-tumor immunity by photodynamic therapy. Expert Rev. Clin. Immunol. 7, 75 (2011).CrossRefGoogle ScholarPubMed
Lim, M.E., Lee, Y.L., Zhang, Y., and Chu, J.J.H.: Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials 33, 1912 (2012).CrossRefGoogle ScholarPubMed
Py-Daniel, K.R., Namban, J.S., Andrade, L.R., Souza, P.E.N., Paterno, L.G., Azevedo, R.B., and Soler, M.A.G.: Highly efficient photodynamic therapy colloidal system based on chloroaluminum phthalocyanine/pluronic micelles. Eur. J. Pharm. Biopharm. 103, 23 (2016).CrossRefGoogle ScholarPubMed
Silva, E.P.O., Franchi, L., and Tedesco, A.C.: Chloro-aluminium phthalocyanine loaded in ultradeformable liposome for photobiology studies on human glioblastoma. RSC Adv. 6, 79631 (2016).CrossRefGoogle Scholar
Hinger, D., Gräfe, S., Navarro, F., Spingler, B., Pandiarajan, D., Walt, H., Couffin, A.C., and Maake, C.: Lipid nanoemulsions and liposomes improve photodynamic treatment efficacy and tolerance in CAL-33 tumor bearing nude mice. J. Nanobiotechnol. 14, 71 (2016).CrossRefGoogle ScholarPubMed
Castilho-Fernandes, A., Lopes, T.G., Primo, F.L., Pinto, R.M., and Tedesco, A.C.: Photodynamic process induced by chloro-aluminum phthalocyanine nanoemulsion in glioblastoma. Photodiagn. Photodyn. Ther. 19, 221 (2017).CrossRefGoogle ScholarPubMed
Souza, T.D., Ziembowicz, F.I., Müller, D.F., Lauermann, S.C., Kloster, C.L., Santos, R.V.C., Lopes, Q.L.S., Ourique, A.F., Machado, G., and Villetti, M.A.: Evaluation of photodynamic activity, photostability and in vitro drug release of zinc phthalocyanine-loaded nanocapsules. Eur. J. Pharm. Sci. 83, 88 (2016).CrossRefGoogle ScholarPubMed
Simioni, A.R., Primo, F.L., and Tedesco, A.C.: Silicon(IV) phthalocyanine-loaded-nanoparticles for application in photodynamic process. J. Laser Appl. 24, 012004-1 (2012).CrossRefGoogle Scholar
Carvalho, J.A., Abreu, A.S., Ferreira, V.T.P., Gonçalves, E.P., Tedesco, A.C., Pinto, J.G., Ferreira-Strixino, J., Beltrame-Junior, M., and Simioni, A.R.: Preparation of gelatin nanoparticles by two step desolvation method for application in photodynamic therapy. J. Biomater. Sci., Polym. Ed. 29, 1287 (2018).CrossRefGoogle ScholarPubMed
Pinheiro, A.C., Bourbona, A.I., Cerqueira, M.A., Maricato, E., Nunes, C., Coimbra, M.A., and Vicente, A.A.: Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydr. Polym. 115, 1 (2015).CrossRefGoogle ScholarPubMed
Cuomo, F., Lopez, F., Miguel, M.G., and Lindman, B.R.: Vesicle-templated layer-by-layer assembly for the production of nanocapsules. Langmuir 26, 10555 (2010).CrossRefGoogle ScholarPubMed
Johnston, A.P.R., Cortez, C., Angelatos, A.S., and Caruso, F.: Layer-by-layer engineered capsules and their applications. Curr. Opin. Colloid Interface Sci 11, 2013 (2006).CrossRefGoogle Scholar
Liu, P. and Xiaorui, L.: Layer-by-layer engineered superparamagnetic polyelectrolyte hybrid hollow microspheres with high magnetic content as drug delivery system. Int. J. Polym. Mater. 64, 857 (2015).CrossRefGoogle Scholar
Sukhorukov, G., Volodkin, D., Günther, A.M., and Moehwald, H.: Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. J. Mater. Chem. 24, 2073 (2004).CrossRefGoogle Scholar
Simioni, A.R., de Jesus, P.C.C., and Tedesco, A.C.: Layer-by-layer hollow photosensitizer microcapsule design via a manganese carbonate hard template for photodynamic therapy in cells. Photodiagn. Photodyn. Ther. 22, 169 (2018).CrossRefGoogle Scholar
Jordens, J., Coker, N., Gielen, B., Gerven, T.V., and Braeken, L.: Ultrasound precipitation of manganese carbonate: The effect of power and frequency on particle properties. Ultrason. Sonochem. 26, 64 (2015).CrossRefGoogle ScholarPubMed
Volodkin, D.V., Petrov, A.I., Prevot, M., and Sukhorukov, G.B.: Matrix polyelectrolyte microcapsules: New system for macromolecule encapsulation. Langmuir 20, 3398 (2004).CrossRefGoogle ScholarPubMed
Kim, M., Choi, M.G., Ra, H.W., Park, S.B., Kim, Y.J., and Lee, K.: Encapsulation of multiple microalgal cells via a combination of biomimetic mineralization and LbL coating. Materials 11, 296 (2018).CrossRefGoogle Scholar
Wu, D., Xu, F., Sun, B., Fu, R., He, R., and Matyjaszewski, K.: Design and preparation of porous polymers. Chem. Rev. 112, 3959 (2012).CrossRefGoogle ScholarPubMed
Irigoyen, J., Moya, S.E., Iturri, J.J., Llarena, I., Azzaroni, O., and Donath, E.: Specific zeta-potential response of layer-by-layer coated colloidal particles triggered by polyelectrolyte ion interactions. Langmuir 25, 3374 (2009).CrossRefGoogle ScholarPubMed
Ghostine, R.A., Markarian, M.Z., and Schlenof, J.B.: Asymmetric growth in polyelectrolyte multilayers. J. Am. Chem. Soc. 135, 7636 (2013).CrossRefGoogle ScholarPubMed
Bronze-Uhle, E.S., Costa, B.C., Ximenes, V.F., and Lisboa-Filho, P.N.: Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol., Sci. Appl. 10, 11 (2017).CrossRefGoogle ScholarPubMed
Sibata, M.N., Tedesco, A.C., and Marchetti, J.M.: Photophysical and photophysical studies of Zinc(II) phthalocyanine in long time circulation micelles for photodynamic therapy use. Eur. J. Pharm. Sci. 23, 131 (2004).CrossRefGoogle Scholar
Silva, A.R.A., Simioni, A.R., and Tedesco, A.C.: Photophysical and complexation studies of chloro-aluminum phthalocyanine with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. J. Nanosci. Nanotechnol. 11, 4046 (2011).CrossRefGoogle ScholarPubMed
Hill, J.E., Linder, M.K., Davies, K.S., Sawada, G.A., Morgan, J., Ohulchanskyy, T.Y., and Detty, M.R.: Selenorhodamine photosensitizers for photodynamic therapy of P-glycoprotein-expressing cancer cells. J. Med. Chem. 57, 8622 (2014).CrossRefGoogle ScholarPubMed
Stradomska, A. and Knoester, J.: Shape of the Q band in the absorption spectra of porphyrin nanotubes: Vibronic coupling or exciton effects? J. Phys. Chem. 133, 094701–1 (2010).CrossRefGoogle ScholarPubMed
Sakamoto, K. and Ohno-Okumura, E.: Syntheses and functional properties of phthalocyanines. Materials 2, 1127 (2009).CrossRefGoogle Scholar
Gerhardt, S.A., Lewis, J.W., Kliger, D.S., Zhang, J.Z., and Simonis, U.: Effect of micelles on oxygen-quenching processes of triplet-state para-substituted tetraphenylporphyrin photosensitizers. J. Phys. Chem. A 107, 2763 (2003).CrossRefGoogle Scholar
Gjuroski, I., Furrer, J., and Vermathen, M.: How does the encapsulation of porphyrinic photosensitizers into polymer matrices affect their self-association and dynamic properties? ChemPhysChem 19, 1089 (2018).CrossRefGoogle ScholarPubMed
Tang, R., Habimana-Griffin, M.L., Lane, D.D., Egbulefu, C., and Achilefu, S.: Nanophotosensitive drugs for light-based cancer therapy: What does the future hold? Nanomedicine 12, 1101 (2017).CrossRefGoogle ScholarPubMed
Eisfeld, A. and Briggs, J.B.: The J- and H-bands of organic dye aggregates. Chem. Phys. 34, 376 (2006).CrossRefGoogle Scholar
Liu, Y., Ma, K., Jiao, T., Xing, R., Shen, G., and Yan, X.: Water-insoluble photosensitizer nanocolloids stabilized by supramolecular interfacial assembly towards photodynamic therapy. Sci. Rep. 7, 42978 (2017).CrossRefGoogle ScholarPubMed
Huang, X. and Brazel, C.S.: On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Controlled Release 73, 121 (2001).CrossRefGoogle ScholarPubMed
Gao, P., Nie, X., Zou, M., Shi, Y., and Cheng, G.: Recent advances in materials for extended release antibiotic delivery system. J. Antibiot. 64, 625 (2011).CrossRefGoogle ScholarPubMed
Lee, J.H. and Yeo, Y.: Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 125, 75 (2015).CrossRefGoogle ScholarPubMed
de Paula, C.S., Tedesco, A.C., Primo, F.L., Vilela, J.M., Andrade, M.S., and Mosqueira, V.C.: Chloroaluminium phthalocyanine polymeric nanoparticles as photosensitisers: Photophysical and physicochemical characterisation, release and phototoxicity in vitro. Eur. J. Pharm. Sci. 49, 371 (2013).CrossRefGoogle ScholarPubMed
Jethara, S.I., Patel, M.R., and Patel, A.D.: Sustained release drug delivery systems: A patent overview. Aperito J. Drug Design. Pharmacol. 1, 104 (2014).Google Scholar
Kumar, K.P.S., Bhowmik, D., Srivastava, S., Paswan, S., and Dutta, A.S.: Sustained release drug delivery system potential. Pharma Innovation 1, 48 (2012).Google Scholar
Schwiertz, A., Wiehe, S., Gräfe, B., and Gitter, M.E.: Calcium phosphate nanoparticles as efficient carriers for photodynamic therapy against cells and bactéria. Biomaterials 30, 3324 (2009).CrossRefGoogle ScholarPubMed
Mesquita, M.Q., Dias, C.J., Gamelas, S., Fardilha, M., Neves, M.G.P.M.S., and Faustino, M.A.F.: An insight on the role of photosensitizer nanocarriers for photodynamic therapy. An. Acad. Bras. Cienc. 90, 1101 (2018).CrossRefGoogle ScholarPubMed
Soboleva, A.S., Jans, D.A., and Rosenkranz, A.A.: Targeted intracellular delivery of photosensitizers. Prog. Biophys. Mol. Biol. 73, 51 (2000).CrossRefGoogle Scholar
Fakhar ud, D., Aman, W., Ullah, I., Qureshi, O.S., Mustapha, O., Shafique, S., and Zeb, A.: Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 12, 7291 (2017).Google Scholar
Silva, E.P.O., Santos, E.D., Gonçalves, C.S., Cardoso, M.A.G., Soares, C.P., and Beltrame-Junior, M.: Zinc phthalocyanine-conjugated with bovine serum albumin mediated photodynamic therapy of human larynx carcinoma. Laser Phys. 26, 105601 (2016).CrossRefGoogle Scholar
Deda, D.K., Uchoa, A.F., Caritá, E., Baptista, M.S., Toma, H.E., and Araki, K.: A new micro/nanoencapsulated porphyrin formulation for PDT treatment. Int. J. Pharm 376, 76 (2009).CrossRefGoogle ScholarPubMed
Deda, D.K. and Araki, K.: Nanotechnology, light and chemical action: An effective combination to kill cancer cells. J. Braz. Chem. Soc. 26, 2448 (2015).Google Scholar
Zhao, B., Yin, J.J., Bilski, P.J., Chignell, C.F., Roberts, J.E., and He, Y.Y.: Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles. Toxicol. Appl. Pharmacol. 241, 163 (2009).CrossRefGoogle ScholarPubMed
Zhu, H., Stein, E.W., Lu, Z., Lvov, Y.M., and McShane, M.J.: Synthesis of size-controlled monodisperse manganese carbonate microparticles as templates for uniform polyelectrolyte microcapsule formation. Chem. Mater. 17, 2323 (2005).CrossRefGoogle Scholar
Siqueira-Moura, M.P., Primo, F.L., Peti, A.P.F., and Tedesco, A.C.: Validated spectrophotometric and spectrofluorimetric methods for determination of chloroaluminum phthalocyanine in nanocarriers. Pharmazie 65, 1 (2010).Google ScholarPubMed
Lunardi, C.N., Rotta, J.C.G., and Tedesco, A.C.: Zinc tetranitrophthalocyanine: Isomer separation and photophysical-photobiological evaluation in J774A tumor cells. J. Porphyrins Phthalocyanines 7, 493 (2003).CrossRefGoogle Scholar