Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T00:34:26.789Z Has data issue: false hasContentIssue false

Fabrication of NdBCO single crystal oxide superconductor with enhanced superconductive properties

Published online by Cambridge University Press:  31 January 2011

M. Kambara
Affiliation:
Department of Metallurgy, Graduate School of Engineering, The University of Tokyo, 7–3–1, Hongo, Bunkyo-ku, Tokyo 113, Japan
X. Yao
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–13 Shinonome, Koto-ku, Tokyo 135, Japan
M. Nakamura
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–13 Shinonome, Koto-ku, Tokyo 135, Japan
Y. Shiohara
Affiliation:
Superconductivity Research Laboratory, ISTEC, 1–13 Shinonome, Koto-ku, Tokyo 135, Japan
T. Umeda
Affiliation:
Department of Metallurgy, Graduate School of Engineering, The University of Tokyo, 7–3–1, Hongo, Bunkyo-ku, Tokyo 113, Japan
Get access

Abstract

Nd1+xBa2−xCu3O6+d (Nd123) single crystals have been successfully grown by the top-seeded solution-growth method. Compositions of Nd123 could be controlled by applying two different methods: control of the oxygen partial pressure of the atmosphere and control of the liquid composition in air. The critical temperatures of Nd123 obtained by these two methods were 96 K (oxygen control) and 95 K (liquid composition control), respectively. The relationship between the peak effect in the Jc-H curve and heat treatment was investigated. The peak effect was found not to be an intrinsic property of Nd123; consequently it could be controlled by heat treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Maeda, A., Yabe, T., Uchinokura, K., and Tanaka, S., Jpn. J. Appl. Phys. 26, L1368 (1987).CrossRefGoogle Scholar
2.Yoo, S. I. and McCallum, R. W., Phys. C 210, 147 (1993).CrossRefGoogle Scholar
3.Wada, T., Suzuki, N., Maeda, T., Maeda, A., Uchida, S., Uchinokura, K., and Tanaka, S., Appl. Phys. Lett. 52, 1989 (1988).CrossRefGoogle Scholar
4.Shaked, H., Veal, B. W., Faber, J. Jr, Hitterman, R. L., Balachandran, U., Tomlins, G., Shi, H., Morss, L., and Paulikas, A. P., Phys. Rev. B 41, 4173 (1990).CrossRefGoogle Scholar
5.Zhang, K., Dabrowski, B., Segre, C. U., Hinks, D. G., Schuller, I. K., Jorgensen, J. D., and Slaski, M., J. Phys. C: Solid State Phys. 20, L935 (1987).CrossRefGoogle Scholar
6.Ng, W. W., Cook, L. P., Paretzkin, B., Hill, M. D., and Stalick, J. K., J. Am. Ceram. Soc. 77, 2354 (1994).Google Scholar
7.Murakami, M., Yoo, S. I., Higuchi, T., Sakai, N., Weltz, J., Koshizuka, N., and Tanaka, S., Jpn. J. Appl. Phys. 33, L715 (1994).CrossRefGoogle Scholar
8.Yoo, S. I., Sakai, N., Takaichi, H., Higuchi, T., and Murakami, M., Appl. Phys. Lett. 65, 633 (1994).CrossRefGoogle Scholar
9.Yoo, S. I., Murakami, M., Sakai, N., Higuchi, T., and Tanaka, S., Jpn. J. Appl. Phys. 33, L1000 (1994).CrossRefGoogle Scholar
10.Hodorowicz, S. A., Czerwonka, J., and Eick, H. A., J. Solid State Chem. 88, 391 (1990).CrossRefGoogle Scholar
11.Wong, W., Paretzkin, B., and Fuller, E. R. Jr, J. Solid State Chem. 85, 117 (1990).CrossRefGoogle Scholar
12.Kramer, M. J., Wu, H., Dennis, K.W., Polizin, B. I., Falzgraf, D. K., and McCallum, R. W., Advances in Superconductivity, edited by Hayakawa, H. and Enomoto, Y. (Springer-Verlag, Tokyo, 1995), Vol. 2, pp. 385390.Google Scholar
13.Osamura, K. and Zhang, W., Z. Metallkd. 84, 522 (1993).Google Scholar
14.Kambara, M., Tagami, M., Yao, X., Goodilin, E. A., Shiohara, Y., and Umeda, T., J. Am. Ceram. Soc. (in press).Google Scholar
15.Jin, S., Tiefel, T. H., Sherwood, R. C., van Dover, R. B., Davis, M. E., Kammlott, G. W., and Fastnacht, R. A., Phys. Rev. B 37, 7850 (1988).CrossRefGoogle Scholar
16.Murakami, M., Morita, M., Doi, K., and Miyamoto, K., Jpn. J. Appl. Phys. 28, 1189 (1989).CrossRefGoogle Scholar
17.Fujimoto, H., Murakami, M., Gotoh, S., Koshizuka, N., Oyama, T., Shiohara, Y., and Tanaka, S., Adv. Supercond. 2, 285 (1990).CrossRefGoogle Scholar
18.Küpfer, H., Zhukov, A. A., Will, A., Jahn, W., Meier-Hirmer, R., Th. Wolf, Voronkova, V. I., Kläser, M., and Saito, K., Phys. Rev. B 54, 644 (1996).CrossRefGoogle Scholar
19.Zhukov, A. A., Küpfer, H., Claus, H., Wühl, H., Kläser, M., and Müller-Vogt, G., Phys. Rev. B 52, R9871 (1995).CrossRefGoogle Scholar
20.Daeumling, M., Seuntjens, J. M., and Larbalestier, D. C., Nature 346, 332 (1990).CrossRefGoogle Scholar
21.Nakamura, M., Kutami, H., and Shiohara, Y., Phys. C 260, 297 (1996).CrossRefGoogle Scholar
22.Wolf, T., Goldacker, W., Obst, B., Roth, G., and Flükiger, R., J. Cryst. Growth 96, 1010 (1989).CrossRefGoogle Scholar
23.Liang, R., Dosanjh, P., Bonn, D. A., Baar, D. J., Carolan, J. F., and Hardy, W. N., Phys. C 195, 51 (1992).CrossRefGoogle Scholar
24.Kambara, M., Nakamura, M., Shiohara, Y., and Umeda, T., Phys. C 275, 127 (1997).CrossRefGoogle Scholar
25.Yuhya, S., Kikuchi, K., and Shiohara, Y., J. Mater. Res. 7, 2673 (1992).CrossRefGoogle Scholar
26.Tsujino, J., Tatsumi, N., and Shiohara, Y., J. Mater. Res. 10, 261 (1995).CrossRefGoogle Scholar
27.Yoshizumi, M., Kambara, M., Shiohara, Y., and Umeda, T.; Proceedings Int. Workshop on Supercond., Kona, Hawaii, 295, 1997, in press.Google Scholar
28.Yao, X., Kambara, M., Nakamura, M., Umeda, T., and Shiohara, Y., Jpn. J. Appl. Phys. 36, L400 (1997).CrossRefGoogle Scholar
29.Nakamura, M., Yamada, Y., Hirayam, T., Ikuhara, Y., Shiohara, Y., and Tanaka, T., Phys. C 259, 295 (1996).CrossRefGoogle Scholar
30.Gyorgy, E. M., van Dover, R. B., Jackson, K. A., Schneemeyer, L. F., and Waszcazk, J. V., Appl. Phys. Lett. 55, 283 (1989).CrossRefGoogle Scholar
31.Yamada, Y., Kutami, H., Shiohara, Y., and Koshizuka, N., Advances in Superconductivity VII, edited by Yamafuji, K. and Morisita, T. (Springer, Tokyo, 1994), p. 133.Google Scholar
32.Tamegai, T., Oguro, I., Iye, Y., and Kishio, K., Phys. C 213, 33 (1993).CrossRefGoogle Scholar
33.Nakamura, M., Hirayama, T., Yamada, Y., Ikuhara, Y., and Shiohara, Y., Jpn. J. Appl. Phys. 35, 3882 (1996).CrossRefGoogle Scholar
34.Hirayama, T., Nakamura, M., Yamada, Y., Ikuhara, K., and Shiohara, Y., J. Mater. Res. 12, 293 (1997).CrossRefGoogle Scholar
35.Wahi, R. P. and Stajer, J., Decomposition of Alloys, The Early Stages, edited by Haasen, P., Gerold, V., Wagner, R., and , M. (Pergamon, Oxford, 1984), p. 165.CrossRefGoogle Scholar