Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T21:07:11.877Z Has data issue: false hasContentIssue false

Fabrication of nanoporous tungsten oxide by galvanostatic anodization

Published online by Cambridge University Press:  03 March 2011

Niloy Mukherjee
Affiliation:
SenTech Corporation, 200 Innovation Boulevard, State College, Pennsylvania 16803
Maggie Paulose
Affiliation:
SenTech Corporation, 200 Innovation Boulevard, State College, Pennsylvania 16803
Oomman K. Varghese
Affiliation:
Department of Electrical Engineering and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
G. K. Mor
Affiliation:
Department of Electrical Engineering and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Craig A. Grimes
Affiliation:
Department of Electrical Engineering and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Nanoporous tungsten oxide (WO3), with pores of 50 to 100 nm in diameter, has been obtained by galvanostatic (constant-current) anodization of tungsten in a 0.25 M oxalic acid electrolyte. At room temperature, the optimum current density for nanoporous formation is approximately 6.5 to 8 mA/cm2. Monitoring of the anodization voltage during the fabrication process reveals a close match with the theoretical model of Parkhutik et al. [V.P. Parkhutik and V.I. Shershulsky, J. Phys. D 25, 1258 (1992)] for growth of nanoporous Al2O3. The as-anodized films are amorphous and crystallize upon annealing at 350 °C in an oxygen atmosphere.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kawasaki, H., Namba, J., Iwatsuji, K., Suda, Y., Wada, K., Ebihara, K., and Ohshima, T., Appl. Surf. Sci. 41, 547 (2002).CrossRefGoogle Scholar
2.Gopel, W. and Schierbaum, K.D., Sens. Actuators B 26–27, 1 (1995).CrossRefGoogle Scholar
3.Badilescu, S. and Ashrit, P.V., Solid State Ionics 158, 187 (2003).CrossRefGoogle Scholar
4.Ozkan, E., Lee, S.H., Liu, P., Tracy, C.E., Tepehan, F.Z., Pitts, J.R., and Deb, S.K., Solid State Ionics 149, 139 (2002).CrossRefGoogle Scholar
5.Aliev, A.E. and Shin, H.W., Solid State Ionics 154–155, 425 (2002).CrossRefGoogle Scholar
6.Antonaia, A., Addonizio, M.L., Minarini, C., Polichetti, T., and Vittori-Antisari, M., Electrochim. Acta 46, 2221 (2001).CrossRefGoogle Scholar
7.Cheng, W., Baudrin, E., Dunn, B., and Zink, J.I., J. Mater. Chem. 11, 92 (2001).CrossRefGoogle Scholar
8.Granqvist, C.G., Electrochim. Acta 44, 3005 (1999).CrossRefGoogle Scholar
9.Rauh, R.D., Electrochim. Acta 44, 3165 (1999).CrossRefGoogle Scholar
10.Lee, S.H., Cheong, H.M., Zhang, J.G., Mascarenhas, A., Benson, D.K., and Deb, S.K., Appl. Phys. Lett. 74, 242 (1999).CrossRefGoogle Scholar
11.Sun, M., Xu, N., Cao, Y.W., Yao, J.N., and Wang, E.G., J. Mater. Res. 15, 927 (2000).CrossRefGoogle Scholar
12.Gavrilyuk, A.I., Electrochim. Acta 44, 3027 (1999).CrossRefGoogle Scholar
13.Coutts, T.J., Li, X., and Cessert, T.A., IEEE Electron. Lett. 26, 660 (1990).Google Scholar
14.Stierna, B. and Granqvist, C.G., Appl. Opt. 29, 117 (1991).Google Scholar
15.Lee, S.H., Cheong, H.M., Tracy, C.E., Mascarenhas, A., Benson, D.K., and Deb, S.K., Electrochim. Acta 44, 3111 (1999).CrossRefGoogle Scholar
16.Nagasawa, Y., Tabata, K., and Ohnishi, H., Appl. Surf. Sci. 121–122, 327 (1997).CrossRefGoogle Scholar
17.Brousse, T. and Schleich, D.M., Sens. Actuators B 31, 77 (1996).CrossRefGoogle Scholar
18.Varghese, O.K., Gong, D., Paulose, M., Grimes, C.A., and Dickey, E.C., J. Mater. Res. 17, 1162 (2002).CrossRefGoogle Scholar
19.Varghese, O.K., Grimes, C.A., Paulose, M., Ong, K.G., and Dickey, E.C., Adv. Mater. 15, 624 (2003).CrossRefGoogle Scholar
20.Varghese, O.K. and Grimes, C.A., of, J. Nanoscience and Nanotechnology (in press).Google Scholar
21.Quarto, F. Di, Paola, A. Di, and Sunseri, C., Electrochim. Acta 26, 1177 (1981).CrossRefGoogle Scholar
22.Beckstead, D.J., Pepin, G.M., and Ord, J.L., J. Electrochem. Soc. 136, 362 (1989).CrossRefGoogle Scholar
23.Ord, J.L. and Smet, D.J. De, J. Electrochem. Soc. 139, 359 (1992).CrossRefGoogle Scholar
24.Parkhutik, V.P. and Shershulsky, V.I., J. Phys. D: Appl. Phys. 25, 1258 (1992).CrossRefGoogle Scholar