Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T16:11:26.124Z Has data issue: false hasContentIssue false

Fabrication of highly ordered ZnO nanowire arrays in anodic alumina membranes

Published online by Cambridge University Press:  31 January 2011

Y. Li*
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031, People's Republic of China
G. S. Cheng
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031, People's Republic of China
L. D. Zhang
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Highly ordered ZnO nanowire arrays were fabricated by oxidizing the metal Zn that was electrodeposited in the pores of anodic alumina membranes (AAMs). The diameters of ZnO nanowires range from 15 to 90 nm. Atomic force microscope, x-ray diffraction, and transmission electron microscopy observations indicate the polycrystalline ZnO nanowires were uniformly assembled into the hexagonally-arranged nanochannels of the AAM. A green emission band caused by the singly ionized oxygen vacancy in the ZnO nanowires was also reported.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Martin, C.R., Science 266, 1961 (1994).CrossRefGoogle Scholar
2.Hoyer, P., Baba, N., and Masuda, H., Appl. Phys. Lett. 66, 2700 (1995).Google Scholar
3.Whitney, T.M., Jiang, J.S., Searson, P.C., and Chien, C.L., Science 261, 1316 (1993).CrossRefGoogle Scholar
4.Almawlawi, D., Coombs, N., and Moskovits, M., J. Appl. Phys. 70, 4421 (1991).CrossRefGoogle Scholar
5.Kawai, S. and Ishiguro, I., J. Electrochem. Soc. 123, 1047 (1976).Google Scholar
6.Yi, G. and Schwarzacher, W., Appl. Phys. Lett. 74, 1746 (1999).Google Scholar
7.Liu, K., Chien, C.L., Searson, P.C., and Yu-Zhang, K., Appl. Phys. Lett. 73, 1436 (1998).CrossRefGoogle Scholar
8.Zhang, Z., Sun, X., Dresselhaus, M.S., Ying, J.Y., and Heremans, J.P., Appl. Phys. Lett. 73, 1589 (1998).CrossRefGoogle Scholar
9.Klein, J.D., Herrick, R.D. II, Palmer, D., and Sailor, M.J., Chem. Mater. 5, 902 (1993).CrossRefGoogle Scholar
10.Foss, C.A., Tierney, M.J., and Martin, C.R., J. Phys. Chem. 96, 9001 (1992).CrossRefGoogle Scholar
11.Saito, M., Kirihara, M., Taniguchi, R., and Miyogi, M., Appl. Phys. Lett. 55, 609 (1989).Google Scholar
12.Masuda, H. and Satoh, M., Jpn. J. Appl. Phys. 35, 1126 (1996).CrossRefGoogle Scholar
13.Zhang, Y.H., Li, X.J., Zheng, L., and Chen, Q.W., Phys. Rev. Lett. 81, 1710 (1998).Google Scholar
14.Kasai, P.H., Phys. Rev. 130, 989 (1963).CrossRefGoogle Scholar
15.Riehl, N. and Ortman, H., J. Electrochem. Soc. 60, 149 (1956).Google Scholar
16.Kroger, F.A. and Vink, H.J., J. Chem. Phys. 22, 250 (1954).CrossRefGoogle Scholar
17.Liu, M., Kitai, A.H., and Masher, P., J. Lumin. 54, 35 (1992).CrossRefGoogle Scholar
18.Habn, D. and Nink, R., J. Phys.: Condens. Matter 3, 311 (1965).Google Scholar
19.Dinger, R., Phys. Rev. Lett. 23, 579 (1969).Google Scholar
20.Bylander, E.G., J. Appl. Phys. 49, 1188 (1978).Google Scholar
21.Mahamuni, S., Borgohain, K., Bendre, B.S., Leppert, V.J., and Risbud, S.H., J. Appl. Phys. 85, 2861 (1999).CrossRefGoogle Scholar
22.Mo, C.M., Li, Y.H., Liu, Y.S., Zhang, Y., and Zhang, L.D., J. Appl. Phys. 83, 4389 (1998).Google Scholar
23.Vanheusden, K., Warren, W.L., Seager, C.H., Tallant, D.K., Voigt, J.A., and Gnade, B.E., J. Appl. Phys. 79, 7983 (1996).Google Scholar