Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-14T12:54:06.602Z Has data issue: false hasContentIssue false

Fabrication of flexible pressure sensors with microstructured polydimethylsiloxane dielectrics using the breath figures method

Published online by Cambridge University Press:  12 November 2015

Sophie Miller
Affiliation:
Chemical Engineering, Stanford University, Stanford, CA 94305, USA
Zhenan Bao*
Affiliation:
Chemical Engineering, Stanford University, Stanford, CA 94305, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Flexible touch sensors with high sensitivity show promise in biomedical diagnostics and for artificial “electronic skin” for robotics or prosthetic devices. For “electronic skin” applications, there exists a need for low-cost, scalable methods for producing pixels that sense both medium (10–100 kPa) and low pressures (<10 kPa). Here, the “breath figures” (BFs) method, a simple, self-assembly-based method for producing honeycomb-structured porous polymer films, was used to prepare pattern compressible, and microstructured dielectric layers for capacitive pressure sensors. Porous polystyrene BFs films served as molds for structuring polydimethylsiloxane dielectrics. Pressure sensing devices containing the BFs-molded dielectrics consistently gave pressure response with little hysteresis, high sensitivities at lower applied pressures, and improved sensitivity at higher pressures. Analysis of microstructure geometries and pressure sensor performance suggests that structures with higher aspect ratios (height-to-width) produce less hysteresis, and that less uniform, more polydisperse structures yield a more linear pressure response.

Type
Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhao, X., Hua, Q., Yu, R., Zhang, Y., and Pan, C.: Flexible, stretchable and wearable multifunctional sensor array as artificial electronic skin for static and dynamic strain mapping. Adv. Electron. Mater. 1, 1500142 (2015).Google Scholar
Gerratt, A.P., Michaud, H.O., and Lacour, S.P.: Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 25, 2287 (2015).Google Scholar
Kim, D-H., Lu, N., Ma, R., Kim, Y-S., Kim, R-H., Wang, S., Wu, J., Won, S.M., Tao, H., Islan, A., Yu, K.J., Kim, T., Chowdhury, R., Ying, M., Xu, L., Li, M., Chung, H-J., Keum, H., McCormick, M., Liu, P., Zhang, Y-W., Omenetto, F.G., Huang, Y., Coleman, T., and Rogers, J.A.: Epidermal electronics. Science 333, 838 (2011).CrossRefGoogle ScholarPubMed
Xu, T., Wang, W., Bian, X., Wang, X., Wang, X., Luo, J.K., and Dong, S.: High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape. Sci. Rep. 5, 12997 (2015).Google Scholar
Someya, T., Sekitani, T., Iba, S., Kato, Y., Kawaguchi, H., and Sakurai, T.: A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. U. S. A. 101, 9966 (2004).Google Scholar
Hammock, M.L., Chortos, A., Tee, B.C-K., Tok, J.B-H., and Bao, Z.: 25th anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress. Adv. Mater. 25, 5997 (2013).Google Scholar
Ramuz, M., Tee, B.C-K., Tok, J.B-H., and Bao, Z.: Transparent, optical, pressure-sensitive artificial skin for large-area stretchable electronics. Adv. Mater. 24, 3223 (2012).Google Scholar
Wagner, S., Lacour, S.P., Jones, J., Hsu, P.I., Sturm, J.C., Li, T., and Suo, Z.: Electronic skin: Architecture and components. Phys. E 25, 326 (2004).CrossRefGoogle Scholar
Pan, L., Chortos, A., Yu, G., Wang, Y., Issacson, S., Allen, R., Shi, Y., Dauskardt, R., and Bao, Z.: An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5, 1 (2014).Google Scholar
Sergio, M., Manaresi, N., Campi, F., Canegallo, R., Tartagni, M., and Guerrieri, R.: A dynamically reconfigurable monolithic CMOS pressure sensor for smart fabric. IEEE J. Solid-State Circuits 38, 966 (2003).Google Scholar
Metzger, C., Gleisch, E., Meyer, J., Dansachmüller, M., Graz, I., Kaltenbrunner, M., Keplinger, C., Schwödiauer, R., and Bauer, S.: Flexible-foam-based capacitive sensor arrays for object detection at low cost. Appl. Phys. Lett. 92, 013506 (2008).Google Scholar
Lipomi, D.J., Vosgueritchian, M., Tee, B.C-K., Hellstrom, S.L., Lee, J.A., Fox, C.H., and Bao, Z.: Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788 (2011).CrossRefGoogle ScholarPubMed
Mannsfeld, S.C.B., Tee, B.C-K., Stoltenberg, R.M., Chen, C.V.H-H., Barman, S., Muir, B.V.O., Sokolov, A.N., Reese, C., and Bao, Z.: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859 (2010).Google Scholar
Schwartz, G., Tee, B.C-K., Mei, J., Appleton, A.L., Kim, D.H., Wang, H., and Bao, Z.: Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013).CrossRefGoogle ScholarPubMed
Tee, B.C-K., Chortos, A., Dunn, R.R., Schwartz, G., Eason, E., and Bao, Z.: Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics. Adv. Funct. Mater. 24, 5427 (2014).Google Scholar
Chen, L.Y., Tee, B.C-K., Chortos, A.L., Schwartz, G., Tse, V., Lipomi, D.J., Philip Wong, H-S., McConnell, M.V., and Bao, Z.: Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5, 50285037 (2014).CrossRefGoogle ScholarPubMed
Woo, S-J., Kong, J-H., Kim, D-G., and Kim, J-M.: A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors. J. Mater. Chem. C 2, 4415 (2014).Google Scholar
Hernández-Guerrero, M. and Stenzel, M.H.: Honeycomb structured polymer films via breath figures. Polym. Chem. 3, 563 (2012).Google Scholar
Bunz, U.H.F.: Breath figures as a dynamic templating method for polymers and nanomaterials. Adv. Mater. 18, 973 (2006).CrossRefGoogle Scholar
Croft, W.B.: Breath figures. Philos. Mag. Series 5 34, 180 (1892).Google Scholar
Sun, W., Shao, Z., and Ji, J.: Particle-assisted fabrication of honeycomb-structured hybrid films via breath figures method. Polymer 51, 4169 (2010).Google Scholar
Heng, L., Zhai, J., Zhao, Y., Xu, J., Sheng, X., and Jiang, L.: Enhancement of photocurrent generation by honeycomb structures in organic thin films. ChemPhysChem 7, 2520 (2006).Google Scholar
Yu, C., Zhai, J., Gao, X., Wan, M., Jiang, L., Li, T., and Li, Z.: Water-assisted fabrication of polyaniline honeycomb structure film. J. Phys. Chem. B 108, 4586 (2004).Google Scholar
Lu, Y., Ren, Y., Wang, L., Wang, X., and Li, C.: Template synthesis of conducting polyaniline composites based on honeycomb ordered polycarbonate film. Polymer 50, 2035 (2009).Google Scholar
Song, L., Bly, R.K., Wilson, J.N., Bakbak, S., Park, J.O., Srinivasarao, M., and Bunz, U.H.F.: Facile microstructuring of organic semiconducting polymers by the breath figure method: Hexagonally ordered bubble arrays in rigid rod-polymers. Adv. Mater. 16, 115 (2004).Google Scholar
Chen, S., Lu, X., Hu, Y., and Lu, Q.. Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold. Biomater. Sci. 3, 85 (2014).Google Scholar
Ghannam, L., Manguian, M., François, J., and Billon, L.: A versatile route to functional biomimetic coatings: Ionomers for honeycomb-like structures. Soft Matter 3, 1492 (2007).Google Scholar
Saito, Y., Shimomura, M., and Yabu, H.: Breath figures of nanoscale bricks: A universal method for creating hierarchic porous materials from inorganic nanoparticles stabilized with mussel-inspired copolymers. Macromol. Rapid Commun. 35, 1763 (2014).Google Scholar
Erdogan, B., Song, L., Wilson, J.N., Park, J.O., Srinivasarao, M., and Bunz, U.H.F.: Permanent bubble arrays from a cross-linked poly(para-phenyleneethynylene): Picoliter holes without microfabrication. J. Am. Chem. Soc. 126, 3678 (2004).Google Scholar
Zhang, Y. and Wang, C.: Micropatterning of proteins on 3D porous polymer film fabricated by using the breath-figure method. Adv. Mater. 19, 913 (2007).CrossRefGoogle Scholar
Galeotti, F., Chiusa, I., Morello, L., Giani, S., Breviario, D., Hatz, S., Damin, F., Chiari, M., and Bolognesi, A.: Breath figures-mediated microprinting allows for versatile applications in molecular biology. Eur. Polym. J. 45, 3027 (2009).CrossRefGoogle Scholar
Böker, A., Lin, Y., Chiapperini, K., Horowitz, R., Thompson, M., Carreon, V., Xu, T., Abetz, C., Skaff, H., Dinsmore, A.D., Emrick, T., and Russell, T.P.: Hierarchical nanoparticle assemblies formed by decorating breath figures. Nat. Mater. 3, 302 (2004).Google Scholar
Vohra, V., Yunus, S., Attout, A., Giovanella, U., Scavia, G., Tubino, R., Botta, C., and Bolognesi, A.: Bifunctional microstructured films and surfaces obtained by soft lithography from breath figure arrays. Soft Matter 5, 1656 (2009).Google Scholar
Bolognesi, A., Botta, C., and Yunus, S.: Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films. Thin Solid Films 492, 307 (2005).Google Scholar
Maruyama, N., Koito, T., Nishida, J., Sawadaishi, T., Cieren, X., Ijiro, K., Karthaus, O., and Shimomura, M.: Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films 327329, 854 (1998).CrossRefGoogle Scholar
Ferrari, E., Fabbri, P., and Pilati, F.: Solvent and substrate contributions to the formation of breath figure patterns in polystyrene films. Langmuir 27, 1874 (2011).Google Scholar
Stenzel-Rosenbaum, M.H., Davis, T.P., Fane, A.G., and Chen, V.: Porous polymer films and honeycomb structures made by the self-organization of well-defined macromolecular structures created by living radical polymerization techniques we acknowledge a DAAD (German Academic Exchange Service) scholarship (HSPIII) for Dr. M.H. Stenzel-Rosenbaum. Angew. Chem. Int. Ed. Engl. 40, 34283432 (2001).3.0.CO;2-6>CrossRefGoogle Scholar
Pitois, O. and Francois, B.: Formation of ordered micro-porous membranes. Eur. Phys. J. B 8, 225 (1999).CrossRefGoogle Scholar
Srinivasarao, M.: Three-dimensionally ordered array of air bubbles in a polymer film. Science 292, 79 (2001).Google Scholar
Peng, J., Han, Y., Yang, Y., and Li, B.: The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 45, 447 (2004).Google Scholar
Cheng, C.X., Tian, Y., Shi, Y.Q., Tang, R.P., and Xi, F.: Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir 21, 6576 (2005).CrossRefGoogle ScholarPubMed
Sun, W., Ji, J., and Shen, J.: Rings of nanoparticle-decorated honeycomb-structured polymeric film: The combination of pickering emulsions and capillary flow in the breath figures method. Langmuir 24, 11338 (2008).Google Scholar
Sun, H., Li, H., and Wu, L.: Micro-patterned polystyrene surfaces directed by surfactant-encapsulated polyoxometalate complex via breath figures. Polymer 50, 2113 (2009).CrossRefGoogle Scholar
Jiang, X., Zhang, T., Xu, L., Wang, C., Zhou, X., and Gu, N.: Surfactant-induced formation of honeycomb pattern on micropipette with curvature gradient. Langmuir 27, 5410 (2011).Google Scholar
Ito, Y., Virkar, A.A., Mannsfeld, S., Oh, J.H., Toney, M., and Locklin, J.: Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. J. Am. Chem. Soc. 131, 9396 (2009).Google Scholar
Thong, A.Z., Lim, D.S.W., Ahsan, A., Goh, G.T.W., Xu, J., and Chin, J.M.: Non-close-packed pore arrays through one-step breath figure self-assembly and reversal. Chem. Sci. 5, 1375 (2014).Google Scholar
Karthaus, O., Maruyama, N., Cieren, X., Shimomura, M., Hasegawa, H., and Hashimoto, J.: Water-assisted formation of micrometer-size honeycomb patterns of polymers. Langmuir 16, 6071 (2000).Google Scholar
Zheng, Y., Kubowaki, Y., Kashiwagi, M., and Miyazaki, K.: Process optimization of preparing honeycomb-patterned polystyrene films by breath figure method. J. Mech. Sci. Technol. 25, 33 (2011).CrossRefGoogle Scholar
Stenzel, M.H., Barner-Kowollik, C., and Davis, T.P.: Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. J. Polym. Sci., Part A: Polym. Chem. 44, 2363 (2006).Google Scholar
Escalé, P., Rubatat, L., Billon, L., and Save, M.: Recent advances in honeycomb-structured porous polymer films prepared via breath figures. Eur. Polym. J. 48, 1001 (2012).Google Scholar
Han, X., Tian, Y., Wang, L., and Xiao, C.: Formation of honeycomb films based on a soluble polyimide synthesized from 2,2′-bis[4-(3,4-dicarboxyphenoxy)phenyl]hexafluoropropane dianhydride and 3,3′-dimethyl-4,4′-diaminodiphenylmethane. J. Appl. Polym. Sci. 107, 618 (2008).CrossRefGoogle Scholar
Huh, M., Jung, M-H., Park, Y.S., Kang, T-B., Nah, C., Russell, R.A., Holden, P.J., and Yun, S. II: Fabrication of honeycomb-structured porous films from poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) via the breath figures method. Polym. Eng. Sci. 52, 920 (2012).Google Scholar
Muñoz-Bonilla, A., Fernández-García, M., and Rodríguez-Hernández, J.: Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 39, 510 (2014).Google Scholar
Li, X., Wang, Y., Zhang, L., Tan, S., Yu, X., Zhao, N., Chen, G., and Xu, J.: Fabrication of honeycomb-patterned polyalkylcyanoacrylate films from monomer solution by breath figures method. J. Colloid Interface Sci. 350, 253 (2010).CrossRefGoogle ScholarPubMed
Wang, C., Mao, Y., Wang, D., Qu, Q., Yang, G., and Hu, X.: Fabrication of highly ordered microporous thin films by PS-b-PAA self-assembly and investigation of their tunable surface properties. J. Mater. Chem. 18, 683 (2008).Google Scholar
Li, L., Zhong, Y., Li, J., Gong, J., Ben, Y., Xu, J., Chen, X., and Ma, Z.: Breath figure lithography: A facile and versatile method for micropatterning. J. Colloid Interface Sci. 342, 192 (2010).Google Scholar
Supplementary material: PDF

Miller and Bao supplementary material

Miller and Bao supplementary material 1

Download Miller and Bao supplementary material(PDF)
PDF 7.8 MB
Supplementary material: PDF

Miller and Bao supplementary material

Miller and Bao supplementary material 2

Download Miller and Bao supplementary material(PDF)
PDF 938.7 KB