Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T09:12:17.023Z Has data issue: false hasContentIssue false

Experimental investigation of the Y2BaCuO5 surface free energy during peritectic solidification of YBCO

Published online by Cambridge University Press:  31 January 2011

Wai Lo
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
D. A. Cardwell
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
J. C. L. Chow
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
H-T. Leung
Affiliation:
IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE, United Kingdom
Get access

Abstract

The characteristic inhomogeneous distribution of nonsuperconducting Y2BaCuO5 (211) inclusions in melt-processed YBa2Cu3O7−δ (123) grains has generally been attributed to 211 particle pushing by 123 growth fronts during peritectic solidification on the basis of reduced total surface free energy. Analysis of the morphology of the interfaces at the 211–211–123 and 211–211-liquid triple points in seeded melt-processed samples invalidates this assumption for the pure YBCO system and has implications of the mechanism of 211 particle segregation.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Campbell, A. M., Cardwell, D. A., Ashworth, S. P., and Coombs, T. A., IRC Research Review, University of Cambridge, UK (1994), p. 174.Google Scholar
2.Fukuyama, H., Seki, K., Takizawa, T., Endou, S., Murakami, M., Takaichi, H., and Koshizuka, N., in Adv. Supercond. V, Proc. 5 Int. Symp. Supercond., edited by Bando, Y. and Yamauchi, H. (Springer-Verlag, Tokyo, 1993), p. 1313.Google Scholar
3.Takahata, R., Ueyama, H., and Kubo, A., in Adv. Supercond. V, Proc. 5 Int. Symp. Supercond., edited by Bando, Y. and Yamauchi, H. (Springer-Verlag, Tokyo, 1993), p. 1309.Google Scholar
4.Lamb, M., Ma, K. B., Cooley, R., Mackey, D., Meng, R. L., W.Chu, C., Chu, W. K., Chen, P. C., and Wilson, T., IEEE Trans. Appl.Superconductivity 5, 638 (1995).CrossRefGoogle Scholar
5.Murakami, M., Supercond. Sci. Technol. 5, 185 (1992).CrossRefGoogle Scholar
6.Jin, S., Sherwood, R., Gyorgy, E. M., Tiefel, T. H., van Dover, R. B.,Kammlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys.Lett. 52, 2074 (1988).CrossRefGoogle Scholar
7.Wang, Z. L., Goyal, A., and Kroeger, D. M., Phys. Rev. B 47, 5373 (1993).CrossRefGoogle Scholar
8.Murakami, M., Gotoh, S., Koshiuka, N., Tanaka, S., Matsushita, T.,Kambe, S., and Kitozawa, K., Cryogenics 30, 390 (1990).CrossRefGoogle Scholar
9.Yamaguchi, K., Murakami, M., Fujimoto, H., Gotoh, S., Oyama, T., Shiohara, Y., Koshizuka, N., and Tanaka, S., J. Mater. Res. 6 1404 (1991).CrossRefGoogle Scholar
10.Wang, Z. L., Goyal, G., and Kroeger, D. M., Phys. Rev. B 47, 5373 (1993).CrossRefGoogle Scholar
11.Lo, Wai, Cardwell, D. A., Dewhurst, C. D., and Dung, S. L., J. Mater. Res. 11 786 (1996).CrossRefGoogle Scholar
12.Kim, C. J., Kim, K. B., Hong, F. W., and Lee, H. Y., J. Mater. Res. 10, 1605 (1995).CrossRefGoogle Scholar
13.Varanasi, C., Black, M. A., and McGinn, P. J., J. Mater. Res. 11, 565 (1996).CrossRefGoogle Scholar
14.Endo, A., Chauhan, H. S., Egi, T., and Shiohara, Y., J. Mater. Res. 11, 795 (1996).CrossRefGoogle Scholar
15.Bateman, C. A., Zhang, J., Chan, H. M., and Harmer, M. P., J. Am. Ceram. Soc. 75, 1281 (1992).CrossRefGoogle Scholar
16.Cima, M., Flemings, M., Figucredo, A., Nakade, M., Ishii, H., Brody, H., and Haggerty, J., J. Appl. Phys. 72, 179 (1992).CrossRefGoogle Scholar
17.Izumi, T., Nakamura, Y., and Shiohara, Y., J. Mater. Res. 7, 1621 (1992).CrossRefGoogle Scholar
18.German, R. M., Liquid Phase Sintering (Plenum Press, New York), p. 18.Google Scholar
19.Kim, C. J., Kim, K. B., Park, H. W., and Hong, G. W., Physica C 250, 1530 (1995).CrossRefGoogle Scholar
20.German, R. M., Liquid Phase Sintering (Plenum Press, New York), pp. 4552.Google Scholar
21.Varanasi, C., and McGinn, P. J., Physica C 207, 79 (1993).CrossRefGoogle Scholar
22.Kim, C. J., Moon, H. C., Kim, K. B., Kwon, S. C., Shhr, D. S., Suh, I. S., and Won, D. Y., J. Mater. Sci. Lett. 11, 831 (1992).CrossRefGoogle Scholar
23.Kim, C. J., Kim, K. B., Hong, G. W., Won, D. Y., Kim, B. H., Kim, C. T., Moon, H. C., and Suhr, D. S., J. Mater. Res. 7, 2349 (1992).CrossRefGoogle Scholar
24.Varanasi, C., Black, M. A., and McGinn, P. J., Supercond. Sci. Technol. 7, 10 (1994).CrossRefGoogle Scholar
25.Sakai, N., Yoo, S. I., and Murakami, M., J. Mater. Res. 10, 1611 (1995).CrossRefGoogle Scholar