Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T19:13:47.530Z Has data issue: false hasContentIssue false

Experimental evidence of enhancement of thermoelectric properties in tellurium nanoparticle-embedded bismuth antimony telluride

Published online by Cambridge University Press:  29 August 2012

Sang Il Kim*
Affiliation:
Advanced Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Yong-In, Gyung-gi 446-712, South Korea
Sungwoo Hwang
Affiliation:
Advanced Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Yong-In, Gyung-gi 446-712, South Korea
Jong Wook Roh
Affiliation:
Advanced Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Yong-In, Gyung-gi 446-712, South Korea
Kyunghan Ahn
Affiliation:
Advanced Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Yong-In, Gyung-gi 446-712, South Korea
Dong-Hee Yeon
Affiliation:
Advanced Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Yong-In, Gyung-gi 446-712, South Korea
Kyu Hyoung Lee*
Affiliation:
Advanced Materials Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Yong-In, Gyung-gi 446-712, South Korea
Sung Wng Kim
Affiliation:
WCU Department of Energy Science, Sungkyunkwan University, Jangan-gu, Suwon 440-746, South Korea
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

We present experimental evidence of enhancement of thermoelectric properties in tellurium (Te) nanoparticle-embedded bismuth antimony telluride (BiSbTe) alloys. Bi0.5Sb1.5Te3 films with a high density of Te particles of 10–20 nm size were prepared by growth of alternating multilayers of ultrathin Te and Bi0.5Sb1.5Te3. As the amount of Te nanoinclusions increased up to ∼15%, the Seebeck coefficient and thermoelectric power factor were increased. Based on the concept of band bending at heterointerfaces as a carrier energy filter, the energy relaxation calculation was made to confirm that the Te nanoinclusions result in a carrier energy filtering effect in p-type bismuth antimony telluride. In addition, thermal conductivities were reduced in the Te-embedded samples, permitting possible further enhancement of the thermoelectric figure of merit. The advantages of Te nanoinclusions in p-type Bi0.5Sb1.5Te3alloys on thermoelectric performance are experimentally realized by both electron- and phonon scattering.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Goldsmid, H.J. and Douglas, R.W.: The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5, 386 (1954).CrossRefGoogle Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).CrossRefGoogle ScholarPubMed
Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., and Kanatzidis, M.G.: Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818 (2004).CrossRefGoogle ScholarPubMed
He, Z., Stiewe, C., Platzek, D., Karpinski, G., Müller, E., Li, S., Toprak, M., and Muhammed, M.: Effect of ceramic dispersion on thermoelectric properties of nano-ZrO2/CoSb3 composites. J. Appl. Phys. 101, 043707 (2007).CrossRefGoogle Scholar
Joshi, G., Lee, H., Lan, Y., Wang, X., Zhu, G., Wang, D., Gould, R.W., Cuff, D.C., Tang, M.Y., Dresselhaus, M.S., Chen, G., and Ren, Z.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 4670 (2008).CrossRefGoogle ScholarPubMed
Mingo, N., Hauser, D., Kobayashi, N.P., Plissonnier, M., and Shakouri, A.: “Nanoparticle-in-Alloy” approach to efficient thermoelectrics: Silicides in SiGe. Nano Lett. 9, 711 (2009).CrossRefGoogle ScholarPubMed
Cook, B.A., Kramer, M.J., Harringa, J.L., Han, M.K., Chung, D.Y., and Kanatzidis, M.G.: Analysis of nanostructuring in high figure-of-merit Ag1−xPbmSbTe2+m thermoelectric materials. Adv. Funct. Mater. 19, 1254 (2009).CrossRefGoogle Scholar
Xie, W., Tang, X., Yan, Y., Zhang, Q., and Tritt, T.M.: Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl. Phys. Lett. 94, 102111 (2009).CrossRefGoogle Scholar
Slack, G.A.: New Materials and Performance Limits for Thermoelectric Cooling, in CRC Handbook of Thermoelectrics, edited by Rowe, D.M. (CRC, New York, NY, 1995); p. 407.Google Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresslhaus, M.S., Chen, G., and Ren, Z.: High thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).CrossRefGoogle ScholarPubMed
Cao, Y.Q., Zhao, X.B., Zhu, T.J., Zhang, X.B., and Tu, J.P.: Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Appl. Phys. Lett. 92, 143106 (2008).CrossRefGoogle Scholar
Fan, S., Zhao, J., Guo, J., Yan, Q., Ma, J., and Hng, H.H.: p-type Bi0.4Sb1.6Te3 nanocomposites with enhanced figure of merit. Appl. Phys. Lett. 96, 182104 (2010).CrossRefGoogle Scholar
Scheele, M., Oeschler, N., Meier, K., Kornowski, A., Klinke, C., and Weller, H.: Synthesis and thermoelectric characterization of Bi2Te3 nanoparticles. Adv. Funct. Mater. 19, 3476 (2009).CrossRefGoogle Scholar
Scheele, M., Oeschler, N., Veremchuk, I., Reinsberg, K.G., Kreuziger, A.M., Kornowski, A., Broekaert, J., Klinke, C., and Weller, H.: ZT enhancement in solution-grown Sb(2−x)BixTe3 nanoplatelets. ACS Nano 4, 4283 (2010).CrossRefGoogle Scholar
Wang, R.Y., Feser, J.P., Gu, X., Yu, K.M., Segalman, R.A., Majumdar, A., Milliron, D.J., and Urban, J.J.: A universal and solution-processable precursor to bismuth chalcogenide thermoelectrics. Chem. Mater. 22, 1943 (2010).CrossRefGoogle Scholar
Zhang, Y.C., Wang, H., Kraemer, S., Shi, Y.F., Zhang, F., Snedaker, M., Ding, K.L., Moskovits, M., Snyder, G.J., and Stuck, G.D.: Seebeck tuning in chalcogenide nanoplate assemblies by nanoscale heterostructuring. ACS Nano 5, 3158 (2011).CrossRefGoogle Scholar
Son, J.S., Choi, M.K., Han, M., Park, K., Kim, J., Lim, S.J., Oh, M., Kuk, Y., Park, C., Kim, S., and Hyeon, T.: n-type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates. Nano Lett. 12, 640 (2012).CrossRefGoogle ScholarPubMed
Liu, C., Lai, H., Liu, Y., and Chen, L.: High thermoelectric figure-of-merit in p-type nanostructured (Bi, Sb)2Te3 fabricated via hydrothermal synthesis and evacuated-and-encapsulated sintering. J. Chem. Mater. 22, 4825 (2012).CrossRefGoogle Scholar
Mehta, R.J., Zhang, Y., Karthik, C., Singh, B., Siegel, R.W., Borca-Tasciuc, T., and Ramanath, G.: A new class of doped nanobulk high-figure-of merit thermoelectrics by scalable bottom-up assembly. Nat. Mater. 11, 233 (2012).CrossRefGoogle ScholarPubMed
Liu, D.W., Li, J.F., Chen, C., and Zhang, B.P.: Effects of SiC nanodispersion on the thermoelectric properties of p-type and n-type Bi2Te3-based alloys. J. Electron. Mater. 40, 992 (2011).CrossRefGoogle Scholar
Lee, K-H., Kim, H-S., Kim, S.I., Lee, E-S., Lee, S-M., Rhyee, J-S., Jung, J-Y., Kim, I-H., Wang, Y., and Koumoto, K.: Enhancement of thermoelectric figure of merit for Bi0.5Sb1.5Te3 by metal nanoparticle decoration. J. Electron. Mater. 41, 1165 (2012).CrossRefGoogle Scholar
Heremans, J.P., Jovovic, V., Toberer, E.S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., and Snyder, G.J.: Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 321, 554 (2008).CrossRefGoogle ScholarPubMed
Jaworski, C.M., Kulbachinskii, V., and Heremans, J.P.: Resonant level formed by tin in Bi2Te3 and the enhancement of room-temperature thermoelectric power. Phys. Rev. B 80, 233201 (2009).CrossRefGoogle Scholar
Faleev, S.V. and Léonard, F.: Theory of enhancement of thermoelectric properties of materials with nanoinclusions. Phys. Rev. B 77, 214304 (2008).CrossRefGoogle Scholar
Zide, J.M., Klenov, D.O., Stemmer, S., Gossard, A.C., Zeng, G., Bowers, J.E., Vashaee, D., and Shakouri, A.: Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles. Appl. Phys. Lett. 87, 112102 (2005).CrossRefGoogle Scholar
Heremans, J.P., Thrush, C.M., and Morelli, D.T.: Thermopower enhancement in PbTe with Pb precipitates. J. Appl. Phys. 98, 063703 (2005).CrossRefGoogle Scholar
Xiong, Z., Chen, X., Huang, X., Bai, S., and Chen, L.: High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater. 58, 3995 (2010).CrossRefGoogle Scholar
Xie, W.J., He, J., Zhu, S., Su, X.L., Wang, S.Y., Holgate, T., Graff, J.W., Ponnambalam, V., Poon, S.J., Tang, X.F., Zhang, Q.J., and Tritt, T.M.: Simultaneously optimizing the independent thermoelectric properties in (Ti, Zr, Hf)(Co, Ni)Sb alloy by in situ forming InSb nanoinclusions. Acta Mater. 58, 4705 (2010).CrossRefGoogle Scholar
Ko, D., Kang, Y., and Murray, C.B.: Enhanced thermopower via carrier energy filtering in solution-processable Pt-Sb2Te3 nanocomposites. Nano Lett. 11, 2841 (2011).CrossRefGoogle ScholarPubMed
Kim, S.I., Ahn, K., Yeon, D-H., Hwang, S., Kim, H-S., Lee, S.M., and Lee, K.H.: Enhancement of Seebeck coefficient in Bi0.5Sb1.5Te3 with high-density tellurium nanoinclusions. Appl. Phys. Express 4, 091801 (2011).CrossRefGoogle Scholar
Huang, B. and Kaviany, M.: Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride. Phys. Rev. B 77, 125209 (2008).CrossRefGoogle Scholar
Zhou, J., Li, X., Ghen, G., and Yang, R.: Semiclassical model for thermoelectric transport in nanocomposites. Phys. Rev. B 82, 115308 (2010).CrossRefGoogle Scholar
Kato, R. and Hatta, I.: Thermal conductivity measurement of thermally-oxidized SiO2 films on a silicon wafer using a thermoreflectance technique. Int. J. Thermophys. 26, 179 (2005).CrossRefGoogle Scholar
Maxwell, J.: Electricity and Magnetism (Oxford, Clarendon, 1873).Google Scholar
Kim, W., Zide, J., Gossard, A., Klenov, D., Stemmer, S., Shakouri, A., and Majumdar, A.: Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).CrossRefGoogle ScholarPubMed
Kim, W. and Majumdar, A.: Phonon scattering cross section of polydispersed spherical nanoparticles. J. Appl. Phys. 99, 084306 (2006).CrossRefGoogle Scholar
Zhang, T., Zhang, Q., Jiang, J., Xiong, Z., Chen, J., Zhang, Y., Li, W., and Xu, G.: Enhanced thermoelectric performance in p-type BiSbTe bulk alloy with nanoinclusion of ZnAlO. Appl. Phys. Lett. 98, 022104 (2011).CrossRefGoogle Scholar