Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T22:44:13.387Z Has data issue: false hasContentIssue false

Experimental and theoretical investigation of the order-disorder transformation in Ni3Al

Published online by Cambridge University Press:  03 March 2011

Francesco Cardellini
Affiliation:
ENEA, Centro Ricerche Energia Casaccia, Divisione Scienza del Materiali, CP2400, 00100 Roma, Italy
Fabrizio Cleri
Affiliation:
ENEA, Centro Ricerche Energia Casaccia, Divisione Scienza del Materiali, CP2400, 00100 Roma, Italy
Giorgio Mazzone
Affiliation:
ENEA, Centro Ricerche Energia Casaccia, Divisione Scienza del Materiali, CP2400, 00100 Roma, Italy
Amelia Montone
Affiliation:
ENEA, Centro Ricerche Energia Casaccia, Divisione Scienza del Materiali, CP2400, 00100 Roma, Italy
Vittorio Rosato
Affiliation:
ENEA, Centro Ricerche Energia Casaccia, Divisione Scienza del Materiali, CP2400, 00100 Roma, Italy
Get access

Abstract

The crystalline disordered phase obtained by mechanical alloying of elemental 75 at. % Ni and 25 at. % Al powders has been investigated. The stability of this phase with respect to the thermal reordering process leading to the L12 structure has been analyzed by means of x-ray diffractometry, scanning electron microscopy, and differential scanning calorimetry. Atomistic simulations on an Ni3Al model, reproduced via molecular dynamics using a many-body potential, have been used to interpret experimental data. The ordering transformation takes place in an extended range of temperature (from 320 to 600 °C) and occurs simultaneously with the release of internal strain. Numerical simulations performed under different conditions show that the activation energy of the Ni-vacancy migration mechanism responsible for the ordering process depends on the local state of strain, thus suggesting an explanation for the considerable lowering of this energy in samples obtained by ball milling.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1West, J. A., Manos, J. T., and Aziz, M. J., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 859.Google Scholar
2Harris, S. R., Pearson, D. H., Garland, C. M., and Fultz, B., J. Mater. Res. 6, 2019 (1991).CrossRefGoogle Scholar
3Brimhall, J. L., Kissinger, H. E., and Chariot, L. A., Radiat. Eff. 77, 273 (1983).CrossRefGoogle Scholar
4Jang, J. S. C. and Koch, C. C., J. Mater. Res. 5, 498 (1990).CrossRefGoogle Scholar
5Benameur, T. and Yavari, A. R., J. Mater. Res. 7, 2971 (1992).CrossRefGoogle Scholar
6Gialanella, , Newcomb, S. B., and Cahn, R. W., in Ordering and Disordering in Alloys, edited by Yavari, A. R., Proc. European Workshop on Ordering and Disordering, Grenoble, July 10–12, 1991 (Elsevier Applied Science, London, 1992), p. 67.CrossRefGoogle Scholar
7Corey, C. L. and Potter, D. I., J. Appl. Phys. 38, 3894 (1967); Baro, M. D., Malagelada, J., Surinach, S., Clavaguera, N., and Clavaguera-Mora, M. T., in Ordering and Disordering in Alloys, edited by Yavari, A. R., Proc. European Workshop on Ordering and Disordering, Grenoble, July 10–12, 1991 (Elsevier Applied Science, London, 1992).CrossRefGoogle Scholar
8Ivanov, E., Grigorieva, T., Golubkova, G., Boldyrev, V., Fasman, A. B., Mikhailenko, S. D., and Kalinina, O. T., Mater. Lett. 7, 51 (1988).CrossRefGoogle Scholar
9Atzmon, M., Phys. Rev. Lett. 64, 487 (1990).CrossRefGoogle Scholar
10Foiles, S. M. and Daw, M. S., J. Mater. Res. 2, 5 (1987).CrossRefGoogle Scholar
11Cleri, F., Mazzone, G., and Rosato, V., Phys. Rev. B 47, 14541 (1993).CrossRefGoogle Scholar
12Tománek, D., Aligia, A. A., and Balseiro, C. A., Phys. Rev. B 32, 5051 (1985).CrossRefGoogle Scholar
13Rosato, V., Guillope, M., and Legrand, B., Philos. Mag. A 59, 321 (1989).CrossRefGoogle Scholar
14Cleri, F. and Rosato, V., Phys. Rev. B (1993, in press).Google Scholar
15Williamson, G. K. and Hall, W. H., Acta Metall. 1, 22 (1953).CrossRefGoogle Scholar
16Kozubski, R. and Cadeville, M. C., J. Phys. F: Met. Phys. 18, 2569 (1988).CrossRefGoogle Scholar
17Hultgren, R., Orr, R. L., and Anderson, P. D., Selected Values of the Thermodynamic Properties of Binary Alloys (American Society for Metals, Metals Park, OH, 1973); Landolt‱Bornstein, , Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV, edited by Madelung, O. (Springer-Verlag, Heidelberg, 1991), Vol. 5a.Google Scholar
18Wang, T. M., Shimdomai, M., and Doyama, M., J. Phys. F: Met. Phys. 14, 37 (1984).CrossRefGoogle Scholar
19Flynn, C. P., Phys. Rev. 171, 682 (1968).CrossRefGoogle Scholar
20Schober, H. R., Petry, W., and Trampenau, J., J. Phys.: Condens. Matter 4, 9321 (1992).Google Scholar
21Liu, H. C. and Mitchell, T. E., Acta Metall. 31, 863 (1983).CrossRefGoogle Scholar
22Sato, H. and Kikuchi, R., Acta Metall. 24, 797 (1976).CrossRefGoogle Scholar
23Dimitrov, C., Tarfa, T., and Dimitrov, O., in Ordering andDisordering in Alloys, edited by Yavari, A. R., Proc. European Workshop on Ordering and Disordering, Grenoble, July 10–12, 1991 (Elsevier Applied Science, London, 1992), p. 130.CrossRefGoogle Scholar
24Recalling that, contrary to the experiment, the numerical simulations require the application of a high hydrostatic pressure, it is clear that the relevant quantity that can be deduced from the calculation is the vacancy formation energy and not the corresponding enthalpy.Google Scholar