Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T02:00:37.125Z Has data issue: false hasContentIssue false

Examining architectures of photoanode–photovoltaic tandem cells for solar water splitting

Published online by Cambridge University Press:  31 January 2011

Kevin Sivula*
Affiliation:
Institut des sciences et ingénierie chimiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Given the limitations of the materials available for photoelectrochemical water splitting, a multiphoton (tandem) approach is required to convert solar energy into hydrogen efficiently and durably. Here we investigate a promising system consisting of a hematite photoanode in combination with dye-sensitized solar cells with newly developed organic dyes, such as the squaraine dye, which permit new configurations of this tandem system. Three configurations were investigated: two side-by-side dye cells behind a semitransparent hematite photoanode, two semitransparent dye sensitized solar cells (DSCs) in front of the hematite, and a trilevel hematite/DSC/DSC architecture. Based on the current-voltage curves of state-of-the-art devices made in our laboratories, we found the trilevel tandem architecture (hematite/SQ1 dye/N749 dye) produces the highest operating current density and thus the highest expected solar-to-hydrogen efficiency (1.36% compared with 1.16% with the standard back DSC case and 0.76% for the front DSC case). Further investigation into the wavelength-dependent quantum efficiency of each component revealed that in each case photons lost as a result of scattering and reflection reduce the performance from the expected 3.3% based on the nanostructured hematite photoanodes. We further suggest avenues for the improvement of each configuration from both the DSC and the photoanode parts.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fujishima, A., Honda, K.Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972)CrossRefGoogle Scholar
2.Khaselev, O., Turner, J.A.A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 (1998)CrossRefGoogle ScholarPubMed
3.Alexander, B.D., Kulesza, P.J., Rutkowska, L., Solarska, R., Augustynski, J.Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298 (2008)CrossRefGoogle Scholar
4.van de Krol, R., Liang, Y.Q., Schoonman, J.Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18, 2311 (2008)CrossRefGoogle Scholar
5.Gratzel, M.Photoelectrochemical cells. Nature 414, 338 (2001)CrossRefGoogle ScholarPubMed
6.Weber, M.F., Dignam, M.J.Efficiency of splitting water with semiconducting photoelectrodes. J. Electrochem. Soc. 131, 1258 (1984)CrossRefGoogle Scholar
7.Murphy, A.B., Barnes, P.R.F., Randeniya, L.K., Plumb, I.C., Grey, I.E., Horne, M.D., Glasscock, J.A.Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 31, 1999 (2006)CrossRefGoogle Scholar
8.Kay, A., Cesar, I., Gratzel, M.New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 128, 15714 (2006)CrossRefGoogle ScholarPubMed
9.Augustynski, J., Calzaferri, G., Courvoisier, J.C., Gratzel, M.Photoelectrochemical hydrogen production: State of the art with special reference to IEA’s hydrogen programme11th World Hydrogen Energy Conference (11 WHEC) edited by T.N. Veziroglu, C.J. Winter, J.P. Baselt, and G.Kreysa (Dechema, Stuttgart, Germany 1996)2379Google Scholar
10.Duret, A., Gratzel, M.Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109, 17184 (2005)CrossRefGoogle ScholarPubMed
11.Nazeeruddin, M.K., Pechy, P., Renouard, T., Zakeeruddin, S.M., Humphry-Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L., Deacon, G.B., Bignozzi, C.A., Gratzel, M.Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 123, 1613 (2001)CrossRefGoogle Scholar
12.Arakawa, H., Shiraishi, C., Tatemoto, M., Kishida, H., Usui, D., Suma, A., Takamisawa, A., Yamaguchi, T.Solar hydrogen production by tandem cell system composed of metal oxide semiconductor film photoelectrode and dye-sensitized solar cell. Solar Hydrogen and Nanotechnology II 65003, 65003 (2007)Google Scholar
13.Yum, J.H., Walter, P., Huber, S., Rentsch, D., Geiger, T., Nuesch, F., De Angelis, F., Gratzel, M., Nazeeruddin, M.K.Efficient far red sensitization of nanocrystalline TiO2 films by an unsymmetrical squaraine dye. J. Am. Chem. Soc. 129, 10320 (2007)CrossRefGoogle ScholarPubMed
14.Bessho, T., Yoneda, E., Yum, J-H., Guglielmi, M., Tavernelli, I., Imai, H., Rothlisberger, U., Nazeeruddin, M.K., Gratzel, M.New paradigm in molecular engineering of sensitizers for solar cell applications. J. Am. Chem. Soc. 131, 5930 (2009)Google ScholarPubMed
15.Standard tables for reference solar spectral irradiances Direct normal and hemispherical on 37° tilted surface. G 173-03Annual Book of ASTM Standards (ASTM International, West Conshohocken, PA 2003)Google Scholar
16.Peter, L.M.Dye-sensitized nanocrystalline solar cells. Phys. Chem. Chem. Phys. 9, 2630 (2007)CrossRefGoogle ScholarPubMed
17.Ito, S., Zakeeruddin, S.M., Comte, P., Liska, P., Kuang, D.B., Gratzel, M.Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte. Nat. Photonics 2, 693 (2008)CrossRefGoogle Scholar
18.Mihi, A., Calvo, M.E., Anta, J.A., Miguez, H.Spectral response of opal-based dye-sensitized solar cells. J. Phys. Chem. C 112, 13 (2008)CrossRefGoogle Scholar
19.Devos, A.Detailed balance limit of the efficiency of tandem solar-cells. J. Phys. D 13, 839 (1980)Google Scholar
20.Nazeeruddin, M.K., Humphry-Baker, R., Liska, P., Gratzel, M.Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J. Phys. Chem. B 107, 8981 (2003)CrossRefGoogle Scholar
21.Durr, M., Bamedi, A., Yasuda, A., Nelles, G.Tandem dye-sensitized solar cell for improved power conversion efficiencies. Appl. Phys. Lett. 84, 3397 (2004)CrossRefGoogle Scholar
22.Cesar, I., Sivula, K., Kay, A., Zboril, R., Gratzel, M.Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113, 772 (2009)CrossRefGoogle Scholar
23.Hu, Y-S., Kleiman-Shwarsctein, A., Stucky, G.D., McFarland, E.W.Improved photoelectrochemical performance of Ti-doped α-Fe2O3 thin films by surface modification with fluoride. Chem. Commun. 19, 2652 (2009)CrossRefGoogle Scholar
24.Zhong, D.K., Sun, J., Inumaru, H., Gamelin, D.R.Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. J. Am. Chem. Soc. 131, 6086 (2009)CrossRefGoogle Scholar