Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T01:37:53.105Z Has data issue: false hasContentIssue false

Evolution of tensile residual stress in thin metal films during energetic particle deposition

Published online by Cambridge University Press:  31 January 2011

A. Misra
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. Nastasi
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

Physical-vapor-deposited thin metal films often exhibit tensile residual stresses. We studied the stress evolution in thin Cr films and found that increasing bombardment with energetic particles (atoms or ions) at low energies leads to an increase of tensile stress to a maximum followed by a rapid decrease. Microstructural characterization by transmission electron microscopy revealed that two different microstructures are observed for the same level of tensile stress: films processed at low bombardment had columnar porosity while no porosity was observed in films processed at higher bombardment. The observed stress evolution is interpreted by considering how the mean interatomic distance (and hence the force) in the intercolumnar regions is modified by energetic particle bombardment.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Thornton, J.A. and Hoffman, D.W., Thin Solid Films 171, 5 (1989).CrossRefGoogle Scholar
2.Doerner, M.F. and Nix, W.D., Crit. Rev. Solid State Mater. 14, 25 (1988).Google Scholar
3.Machlin, E.S., Materials Science in Microelectronics—The Relationships between Thin Film Processing and Structure (GIRO Press, New York, 1995), Vol. 1, pp. 157184.Google Scholar
4.Abermann, R., Vacuum 41, 1279 (1990).CrossRefGoogle Scholar
5.Thompson, C.V. and Carel, R., J. Mech. Phys. Solids 44, 657 (1996).CrossRefGoogle Scholar
6.Shull, A.L. and Spaepen, F., J. Appl. Phys. 80, 6243 (1996).CrossRefGoogle Scholar
7.Hoffman, D.W., Thin Solid Films 34, 185 (1976).CrossRefGoogle Scholar
8.Nix, W.D. and Clemens, B.M., J. Mater. Res. 14, 3467 (1999).CrossRefGoogle Scholar
9.Chaudhari, P., J. Vac. Sci. Technol. 9, 520 (1972).CrossRefGoogle Scholar
10.Cammarata, R.C., Bilello, J.C., Lindsay Greer, A., Sieradzki, K., and Yalisove, S.M., MRS Bull. 24(2), 34 (1999).CrossRefGoogle Scholar
11.Misra, A., Fayeulle, S., Kung, H., Mitchell, T.E., and Nastasi, M., Appl. Phys. Lett. 73, 891 (1998).CrossRefGoogle Scholar
12.Misra, A., Fayeulle, S., Kung, H., Mitchell, T.E., and Nastasi, M., Nucl. Inst. Meth. B 148, 211 (1999).CrossRefGoogle Scholar
13.Kadlec, S., Quaeyhaegens, C., Knuyt, G., and Stals, L.M., Surf. Coat. Technol. 89, 177 (1997).CrossRefGoogle Scholar
14.Wade, R.H. and Silcox, J., Phys. Status Solidi 19, 63 (1967).CrossRefGoogle Scholar
15.Banerjea, A. and Smith, J.R., Phys. Rev. B 37, 6632 (1988).CrossRefGoogle Scholar
16.Rose, J.H., Ferrante, J., and Smith, J.R., Phys. Rev. Lett. 47, 675 (1981).CrossRefGoogle Scholar
17.Misra, A., Kung, H., Mitchell, T.E., and Nastasi, M. (unpublished).Google Scholar
18.Muller, K.H., J. Appl. Phys. 62, 1796 (1987).CrossRefGoogle Scholar
19.Marks, N.A., McKenzie, D.R., and Pailthorpe, B.A., Phys. Rev. B 53, 4117 (1996).CrossRefGoogle Scholar
20.Zhou, X.W., Johnson, R.A., and Wadley, H.N.G, Acta Mater. 45, 1513 (1997).CrossRefGoogle Scholar
21.Gilmore, C.M. and Sprague, J.A., Phys. Rev. B 44, 8950 (1991).CrossRefGoogle Scholar
22.Voter, A.F. and Germann, T.C., in Mechanisms and Principles of Epitaxial Growth in Metallic Systems, edited by Willie, L.T., Burmester, C.P., Terakura, K., Comsa, G., and Williams, E.D. (Mater. Res. Soc. Symp. Proc. 528, Warrendale, PA, 1998), p. 221.Google Scholar