Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T21:16:42.582Z Has data issue: false hasContentIssue false

The evolution of low temperature solid oxide fuel cells

Published online by Cambridge University Press:  03 July 2012

Kang Taek Lee
Affiliation:
University of Maryland Energy Research Center, University of Maryland, College Park, Maryland 20742
Hee Sung Yoon
Affiliation:
University of Maryland Energy Research Center, University of Maryland, College Park, Maryland 20742
Eric D. Wachsman*
Affiliation:
University of Maryland Energy Research Center, University of Maryland, College Park, Maryland 20742
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Low temperature solid oxide fuel cells (SOFCs) are a promising solution to revolutionize stationary, transportation, and personal power energy conversion efficiency. Through investigation of fundamental conduction mechanisms, we have developed the highest conductivity solid electrolyte, stabilized bismuth oxide (Dy0.08W0.04Bi0.88O0.36). To overcome its inherent thermodynamic instability in the anode environment, we invented a functionally graded bismuth oxide/ceria bilayered electrolyte. For compatibility with this bilayared electrolyte, we developed high performance bismuth ruthenate–bismuth oxide composite cathodes. Finally, these components were integrated into an anode-supported cell with an anode functional layer, resulting in an exceptionally high power density of ∼2 W/cm2 at moderate temperatures (650 °C) and sufficient power down to 300–400 °C for most applications. Moreover, because SOFCs can operate on conventional fuels, these low temperature SOFCs provide one of the most efficient energy conversion technologies available without relying on a hydrogen infrastructure.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wachsman, E.D. and Lee, K.T.: Lowering the temperature of solid oxide fuel cells. Science 334, 935 (2011).CrossRefGoogle ScholarPubMed
2.Wachsman, E.D., Marlowe, C.A., and Lee, K.T.: Role of solid oxide fuel cells in a balanced energy strategy. Energy Environ. Sci. 5, 5498 (2012).CrossRefGoogle Scholar
3.Steele, B.C.H.: Material science and engineering: The enabling technology for the commercialisation of fuel cell systems. J. Mater. Sci. 36, 1053 (2001).CrossRefGoogle Scholar
4.Wachsman, E.D., Jiang, N., Mason, D.M., and Stevenson, D.A.: Solid state oxygen kinetics in Er2O3 stabilized Bi2O3. Proc. Electrochem. Soc. 89, 15 (1989).Google Scholar
5.Wachsman, E.D., Jiang, N., Frank, C.W., Mason, D.M., and Stevenson, D.A.: Spectroscopic investigation of oxygen vacancies in solid oxide electrolytes. Appl. Phys. A: Mater. Sci. Process. 50, 545 (1990).CrossRefGoogle Scholar
6.Wachsman, E.D., Ball, G.R., Jiang, N., and Stevenson, D.A.: Structural and defect studies in solid oxide electrolytes. Solid State Ionics 52, 213 (1992).CrossRefGoogle Scholar
7.Jiang, N., Buchanan, R.M., Henn, F.E.G., Marshall, A.F., Stevenson, D.A., and Wachsman, E.D.: Aging phenomenon of stabilized bismuth oxides. Mater. Res. Bull. 29, 247 (1994).CrossRefGoogle Scholar
8.Jiang, N.X. and Wachsman, E.D.: Structural stability and conductivity of phase-stabilized cubic bismuth oxides. J. Am. Ceram. Soc. 82, 3057 (1999).CrossRefGoogle Scholar
9.Wachsman, E.D., Boyapati, S., Kaufman, M.J., and Jiang, N.X.: Modeling of ordered structures of phase-stabilized cubic bismuth oxides. J. Am. Ceram. Soc. 83, 1964 (2000).CrossRefGoogle Scholar
10.Boyapati, S., Wachsman, E.D., and Jiang, N.X.: Effect of oxygen sublattice ordering on interstitial transport mechanism and conductivity activation energies in phase-stabilized cubic bismuth oxides. Solid State Ionics 140, 149 (2001).CrossRefGoogle Scholar
11.Boyapati, S., Wachsman, E.D., and Chakoumakos, B.C.: Neutron diffraction study of occupancy and positional order of oxygen ions in phase stabilized cubic bismuth oxides. Solid State Ionics 138, 293 (2001).CrossRefGoogle Scholar
12.Wachsman, E.D., Boyapati, S., and Jiang, N.: Effect of dopant polarizability on oxygen sublattice order in phase-stable cubic bismuth oxide. Ionics 7, 6 (2001).CrossRefGoogle Scholar
13.Jiang, N.X., Wachsman, E.D., and Jung, S.H.: A higher conductivity Bi2O3-based electrolyte. Solid State Ionics 150, 347 (2002).CrossRefGoogle Scholar
14.Wachsman, E.D.: Effect of oxygen sublattice order on conductivity in highly defective fluorite oxides. J. Eur. Ceram. Soc. 24, 1281 (2004).CrossRefGoogle Scholar
15.Jung, D.W., Duncan, K.L., and Wachsman, E.D.: Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x-(WO3)y-(BiO1.5)1-x-y. Acta Mater. 58, 355 (2010).CrossRefGoogle Scholar
16.Jung, D.W., Nino, J.C., Duncan, K.L., Bishop, S.R., and Wachsman, E.D.: Enhanced long-term stability of bismuth oxide-based electrolytes for operation at 500 A degrees C. Ionics 16, 97 (2010).CrossRefGoogle Scholar
17.Jung, D.W., Duncan, K.L., Camaratta, M.A., Lee, K.T., Nino, J.C., and Wachsman, E.D.: Effect of annealing temperature and dopant concentration on the conductivity behavior in (DyO1.5)x-(WO3)y-(BiO1.5)1-x-y. J. Am. Ceram. Soc. 93, 1384 (2010).CrossRefGoogle Scholar
18.Wachsman, E.D., Jayaweera, P., Jiang, N., Lowe, D.M., and Pound, B.G.: Stable high conductivity ceria/bismuth oxide bilayered electrolytes. J. Electrochem. Soc. 144, 233 (1997).Google Scholar
19.Jaiswal, A., Hu, C.T., and Wachsman, E.D.: Bismuth ruthenate-stabilized bismuth oxide composite cathodes for IT-SOFC. J. Electrochem. Soc. 154, B1088 (2007).CrossRefGoogle Scholar
20.Camaratta, M. and Wachsman, E.: High-performance composite Bi2Ru2O7-Bi1.6Er0.4O3 cathodes for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 155, B135 (2008).CrossRefGoogle Scholar
21.Ahn, J.S., Camaratta, M.A., Pergolesi, D., Lee, K.T., Yoon, H., Lee, B.W., Jung, D.W., Traversa, E., and Wachsman, E.D.: Development of high performance ceria/bismuth oxide bilayered electrolyte SOFCs for lower temperature operation. J. Electrochem. Soc. 157, B376 (2010).CrossRefGoogle Scholar
22.Ahn, J.S., Pergolesi, D., Camaratta, M.A., Yoon, H., Lee, B.W., Lee, K.T., Jung, D.W., Traversa, E., and Wachsman, E.D.: High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells. Electrochem. Commun. 11, 1504 (2009).CrossRefGoogle Scholar
23.Steele, B.C.H. and Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345 (2001).CrossRefGoogle ScholarPubMed
24.deSouza, S., Visco, S.J., and DeJonghe, L.C.: Thin-film solid oxide fuel cell with high performance at low-temperature. Solid State Ionics 98, 57 (1997).CrossRefGoogle Scholar
25.Steele, B.C.H.: Interfacial reactions associated with ceramic ion-transport membranes. Solid State Ionics 75, 157 (1995).CrossRefGoogle Scholar
26.Takahashi, T., Esaka, T., and Iwahara, H.: High oxide ion conduction in sintered oxides of system Bi2O3-Gd2O3. J. Appl. Electrochem. 5, 197 (1975).CrossRefGoogle Scholar
27.Harwig, H.A.: Structure of bismuthsesquioxide – alpha, beta, gamma and delta-phase. Z. Anorg. Allg. Chem. 444, 151 (1978).CrossRefGoogle Scholar
28.Takahashi, T., Esaka, T., and Iwahara, H.: Electrical-conduction in sintered oxides of system Bi2O3-BaO. J. Solid State Chem. 16, 317 (1976).CrossRefGoogle Scholar
29.Verkerk, M.J., Keizer, K., and Burggraaf, A.J.: High oxygen ion conduction in sintered oxides of the Bi2O3-Er2O3 system. J. Appl. Electrochem. 10, 81 (1980).Google Scholar
30.Sillen, L.G.: X-ray studies on bismuth trioxide. Ark. Kemi Mineral. Geol. 12A, 15 (1937).Google Scholar
31.Gattow, G. and Schröder, H.: About bismuth oxides. III. The crystal structure of the high-temperature modification of bismuth (III) oxide (δ-Bi2O3). Z. Anorg. Allg. Chem. 318, 14 (1962).Google Scholar
32.Willis, B.T.M.: The anomalous behaviour of the neutron reflexion of fluorite. Acta Crystallogr. 18, 2 (1965).CrossRefGoogle Scholar
33.Aidhy, D.S., Nino, J.C., Sinnott, S.B., Wachsman, E.D., and Phillpot, S.R.: Vacancy-ordered structure of cubic bismuth oxide from simulation and crystallographic analysis. J. Am. Ceram. Soc. 91, 2349 (2008).CrossRefGoogle Scholar
34.Aidhy, D.S., Sinnott, S.B., Wachsman, E.D., Phillpot, S.R., and Nino, J.C.: Structure of delta-Bi2O3 from density functional theory: A systematic crystallographic analysis. J. Solid State Chem. 182, 1222 (2009).CrossRefGoogle Scholar
35.Hoda, S.N. and Chang, L.L.Y.: Phase relations in system Bi2O3-WO3. J. Am. Ceram. Soc. 57, 323 (1974).CrossRefGoogle Scholar
36.Watanabe, A. and Ono, A.: Thermostable region of an oxide ion conductor, Bi7WO13.5 (=7Bi2O3 -2WO3), and the solid solubility extension. Solid State Ionics 174, 15 (2004).CrossRefGoogle Scholar
37.Takahashi, T., Esaka, T., and Iwahara, H.: Conduction in Bi2O3-based oxide ion conductors under low oxygen-pressure. 1. Current blackening of Bi2O3-Y2O3 electrolyte. J. Appl. Electrochem. 7, 299 (1977).CrossRefGoogle Scholar
38.Wang, C.Z., Xu, X.G., and Li, B.Z.: Ionic and electronic conduction of oxygen ion conductors in the Bi2O3-Y2O3 system. Solid State Ionics 13, 135 (1984).Google Scholar
39.Duran, P., Jurado, J.R., Moure, C., Valverde, N., and Steele, B.C.H.: High oxygen ion conduction in some Bi2O3-Y2O3(Er2O3) solid-solutions. Mater. Chem. Phys. 18, 287 (1987).CrossRefGoogle Scholar
40.Yahiro, H., Eguchi, Y., Eguchi, K., and Arai, H.: Oxygen ion conductivity of the ceria samarium oxide system with fluorite structure. J. Appl. Electrochem. 18, 527 (1988).CrossRefGoogle Scholar
41.Eguchi, K., Setoguchi, T., Inoue, T., and Arai, H.: Electrical-properties of ceria-based oxides and their application to solid oxide fuel-cells. Solid State Ionics 52, 165 (1992).Google Scholar
42.Steele, B.C.H.: Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 degrees C. Solid State Ionics 129, 95 (2000).CrossRefGoogle Scholar
43.Omar, S., Wachsman, E.D., and Nino, J.C.: A co-doping approach towards enhanced ionic conductivity in fluorite-based electrolytes. Solid State Ionics 177, 3199 (2006).CrossRefGoogle Scholar
44.Omar, S., Wachsman, E.D., and Nino, J.C.: Higher ionic conductive ceria-based electrolytes for solid oxide fuel cells. Appl. Phys. Lett. 91, 114106-1114106-3 (2007).CrossRefGoogle Scholar
45.Omar, S., Wachsman, E.D., and Nino, J.C.: Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ionics 178, 1890 (2008).CrossRefGoogle Scholar
46.Andersson, D.A., Simak, S.I., Skorodumova, N.V., Abrikosov, I.A., and Johansson, B.: Optimization of ionic conductivity in doped ceria. Proc. Natl. Acad. Sci. U.S.A. 103, 3518 (2006).CrossRefGoogle ScholarPubMed
47.Shannon, R.D.: Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).CrossRefGoogle Scholar
48.Ahn, J.S., Omar, S., Yoon, H., Nino, J.C., and Wachsman, E.D.: Performance of anode-supported solid oxide fuel cell using novel ceria electrolyte. J. Power Sources 195, 2131 (2010).CrossRefGoogle Scholar
49.Duncan, K.L. and Wachsman, E.D.: Continuum-level analytical model for solid oxide fuel cells with mixed conducting electrolytes. J. Electrochem. Soc. 156, B1030 (2009).CrossRefGoogle Scholar
50.Haile, S.M.: Fuel cell materials and components. Acta Mater. 51, 5981 (2003).CrossRefGoogle Scholar
51.Lee, K.T., Vito, N.J., Mattehw, C.A., Yoon, H.S., and Wachsman, E.D.: Effect of Ni-GDC AFL composition on performance of IT-SOFCs. ECS Trans. 28, 151 (2010).CrossRefGoogle Scholar
52.Brett, D.J.L., Atkinson, A., Brandon, N.P., and Skinner, S.J.: Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568 (2008).CrossRefGoogle ScholarPubMed
53.Zhang, X., Robertson, M., Deces-Petit, C., Qu, W., Kesler, O., Maric, R., and Ghosh, D.: Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte. J. Power Sources 164, 668 (2007).CrossRefGoogle Scholar
54.Duncan, K.L., Lee, K.T., and Wachsman, E.D.: Dependence of open-circuit potential and power density on electrolyte thickness in solid oxide fuel cells with mixed conducting electrolytes. J. Power Sources 196, 2445 (2011).CrossRefGoogle Scholar
55.Park, J.Y. and Wachsman, E.D.: Stable and high conductivity ceria/bismuth oxide bilayer electrolytes for lower temperature solid oxide fuel cells. Ionics 12, 15 (2006).CrossRefGoogle Scholar
56.Wachsman, E.D.: Functionally gradient bilayer oxide membranes and electrolytes. Solid State Ionics 152, 657 (2002).CrossRefGoogle Scholar
57.Lee, K.T., Jung, D.W., Camaratta, M.A., Ahn, J.S., and Wachsman, E.D.: Gd0.1Ce0.9O1.95/Er0.2Bi1.6O3 bilayered electrolytes fabricated by a simple colloidal route using nano-sized Er0.2Bi1.6O3 powders for high performance LT-SOFCs. J. Power Sources 205, 122 (2012).CrossRefGoogle Scholar
58.Liu, Q.L., Khor, K.A., Chan, S.H., and Chen, X.J.: Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilayer electrolyte prepared by wet ceramic co-sintering process. J. Power Sources 162, 1036 (2006).CrossRefGoogle Scholar
59.Lim, H-T. and Virkar, A.V.: Measurement of oxygen chemical potential in Gd2O3-doped ceria-Y2O3-stabilized zirconia bi-layer electrolyte, anode-supported solid oxide fuel cells. J. Power Sources 192, 267 (2009).CrossRefGoogle Scholar
60.Xia, C.R., Rauch, W., Chen, F.L., and Liu, M.L.: Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics 149, 11 (2002).CrossRefGoogle Scholar
61.Sasaki, K., Tamura, J., Hosoda, H., Lan, T.N., Yasumoto, K., and Dokiya, M.: Pt-perovskite cermet cathode for reduced-temperature SOM. Solid State Ionics 148, 551 (2002).CrossRefGoogle Scholar
62.Ishihara, T., Kudo, T., Matsuda, H., and Takita, Y.: Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel-cells for low-temperature operation. J. Electrochem. Soc. 142, 1519 (1995).CrossRefGoogle Scholar
63.Mogensen, M. and Skaarup, S.: Kinetic and geometric aspects of solid oxide fuel cell electrodes. Solid State Ionics 8688, 1151 (1996).CrossRefGoogle Scholar
64.Godickemeier, M., Sasaki, K., Gauckler, L.J., and Riess, I.: Perovskite cathodes for solid oxide fuel cells based on ceria electrolytes. Solid State Ionics 8688, 691 (1996).CrossRefGoogle Scholar
65.Minh, N.Q.: Ceramic fuel-cells. J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
66.Murray, E.P., Tsai, T., and Barnett, S.A.: Oxygen transfer processes in (La, Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: An impedance spectroscopy study. Solid State Ionics 110, 235 (1998).CrossRefGoogle Scholar
67.Yoon, S.P., Han, J., Nam, S.W., Lim, T.H., Oh, I.H., Hong, S.A., Yoo, Y.S., and Lim, H.C.: Performance of anode-supported solid oxide fuel cell with La0.85Sr0.15MnO3 cathode modified by sol-gel coating technique. J. Power Sources 106, 160 (2002).CrossRefGoogle Scholar
68.Jiang, S.P.: Issues on development of (La, Sr)MnO3 cathode for solid oxide fuel cells. J. Power Sources 124, 390 (2003).CrossRefGoogle Scholar
69.Brandon, N.P., Skinner, S., and Steele, B.C.H.: Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 33, 183 (2003).CrossRefGoogle Scholar
70.Tanner, C.W., Fung, K.Z., and Virkar, A.V.: The effect of porous composite electrode structure on solid oxide fuel cell performance. 1. Theoretical analysis. J. Electrochem. Soc. 144, 21 (1997).CrossRefGoogle Scholar
71.Murray, E.P. and Barnett, S.A.: (La, Sr) MnO3-(Ce, Gd)O2-x composite cathodes for solid oxide fuel cells. Solid State Ionics 143, 265 (2001).CrossRefGoogle Scholar
72.Jiang, S.P.: A comparison of O−2 reduction reactions on porous (La, Sr)MnO3 and (La, Sr)(Co, Fe)O3 electrodes. Solid State Ionics 146, 1 (2002).CrossRefGoogle Scholar
73.Yasuda, I., Ogasawara, K., Hishinuma, M., Kawada, T., and Dokiya, M.: Oxygen tracer diffusion coefficient of (La, Sr)MnO3+/-delta. Solid State Ionics 8688, 1197 (1996).CrossRefGoogle Scholar
74.Kan, C.C., Kan, H.H., Van Assche, F.M., Armstrong, E.N., and Wachsman, E.D.: Investigating oxygen surface exchange kinetics of La0.8Sr0.2MnO3-delta and La0.6Sr0.4Co0.2Fe0.8O3-delta using an isotopic tracer. J. Electrochem. Soc. 155, B985 (2008).CrossRefGoogle Scholar
75.Adler, S.B.: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791 (2004).CrossRefGoogle ScholarPubMed
76.Vohs, J.M. and Gorte, R.J.: High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21, 943 (2009).CrossRefGoogle Scholar
77.Baque, L., Caneiro, A., Moreno, M.S., and Serquis, A.: High performance nanostructured IT-SOFC cathodes prepared by novel chemical method. Electrochem. Commun. 10, 1905 (2008).CrossRefGoogle Scholar
78.Wilson, J.R. and Barnett, S.A.: Solid oxide fuel cell Ni-YSZ anodes: Effect of composition on microstructure and performance. Electrochem. Solid-State Lett. 11, B181 (2008).CrossRefGoogle Scholar
79.Shikazono, N., Sakamoto, Y., Yamaguchi, Y., and Kasagi, N.: Microstructure and polarization characteristics of anode supported tubular solid oxide fuel cell with co-precipitated and mechanically mixed Ni-YSZ anodes. J. Power Sources 193, 530 (2009).CrossRefGoogle Scholar
80.Bieberle, A., Meier, L.P., and Gauckler, L.J.: The electrochemistry of Ni pattern anodes used as solid oxide fuel cell model electrodes. J. Electrochem. Soc. 148, A646 (2001).CrossRefGoogle Scholar
81.Wilson, J.R., Kobsiriphat, W., Mendoza, R., Chen, H.Y., Hiller, J.M., Miller, D.J., Thornton, K., Voorhees, P.W., Adler, S.B., and Barnett, S.A.: Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat. Mater. 5, 541 (2006).CrossRefGoogle ScholarPubMed
82.Gostovic, D., Smith, J.R., Kundinger, D.P., Jones, K.S., and Wachsman, E.D.: Three-dimensional reconstruction of porous LSCF cathodes. Electrochem. Solid-State Lett. 10, B214 (2007).CrossRefGoogle Scholar
83.Smith, J.R., Chen, A., Gostovic, D., Hickey, D., Kundinger, D., Duncan, K.L., DeHoff, R.T., Jones, K.S., and Wachsman, E.D.: Evaluation of the relationship between cathode microstructure and electrochemical behavior for SOFCs. Solid State Ionics 180, 90 (2009).CrossRefGoogle Scholar
84.Wilson, J.R., Duong, A.T., Gameiro, M., Chen, H.Y., Thornton, K., Mumm, D.R., and Barnett, S.A.: Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode. Electrochem. Commun. 11, 1052 (2009).CrossRefGoogle Scholar
85.Wilson, J.R., Gameiro, M., Mischaikow, K., Kalies, W., Voorhees, P.W., and Barnett, S.A.: Three-dimensional analysis of solid oxide fuel cell Ni-YSZ anode interconnectivity. Microsc. Microanal. 15, 71 (2009).CrossRefGoogle ScholarPubMed
86.Wilson, J.R., Cronin, J.S., Duong, A.T., Rukes, S., Chen, H.Y., Thornton, K., Mumm, D.R., and Barnett, S.: Effect of composition of (La0.8Sr0.2MnO3-Y2O3-stabilized ZrO2) cathodes: Correlating three-dimensional microstructure and polarization resistance. J. Power Sources 195, 1829 (2010).CrossRefGoogle Scholar
87.Shikazono, N., Kanno, D., Matsuzaki, K., Teshima, H., Sumino, S., and Kasagi, N.: Numerical assessment of SOFC anode polarization based on three-dimensional model microstructure reconstructed from FIB-SEM images. J. Electrochem. Soc. 157, B665 (2010).CrossRefGoogle Scholar
88.Kan, C.C. and Wachsman, E.D.: Identifying drivers of catalytic activity through systematic surface modification of cathode materials. J. Electrochem. Soc. 156, B695 (2009).CrossRefGoogle Scholar
89.Kan, C.C. and Wachsman, E.D.: Isotopic-switching analysis of oxygen reduction in solid oxide fuel cell cathode materials. Solid State Ionics 181, 338 (2010).CrossRefGoogle Scholar
90.Shao, Z.P. and Haile, S.M.: A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170 (2004).CrossRefGoogle ScholarPubMed
91.Jaiswal, A. and Wachsman, E.D.: Bismuth-ruthenate-based cathodes for IT-SOFCs. J. Electrochem. Soc. 152, A787 (2005).CrossRefGoogle Scholar
92.Jaiswal, A. and Wachsman, E.: Impedance studies on bismuth-ruthenate-based electrodes. Ionics 15, 1 (2009).CrossRefGoogle Scholar
93.Lee, K.S., Seo, D.K., and Whangbo, M.H.: Structural and electronic factors governing the metallic and nonmetallic properties of the pyrochlores A2Ru2O7-y. J. Solid State Chem. 131, 405 (1997).CrossRefGoogle Scholar
94.Camaratta, M. and Wachsman, E.: Silver-bismuth oxide cathodes for IT-SOFCs - Part II - Improving stability through microstructural control. Solid State Ionics 178, 1411 (2007).CrossRefGoogle Scholar
95.Camaratta, M. and Wachsman, E.: Silver-bismuth oxide cathodes for IT-SOFCs; Part I - Microstructural instability. Solid State Ionics 178, 1242 (2007).CrossRefGoogle Scholar
96.Will, J., Mitterdorfer, A., Kleinlogel, C., Perednis, D., and Gauckler, L.J.: Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics 131, 79 (2000).CrossRefGoogle Scholar
97.Kim, J.W., Virkar, A.V., Fung, K.Z., Mehta, K., and Singhal, S.C.: Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells. J. Electrochem. Soc. 146, 69 (1999).CrossRefGoogle Scholar
98.Ahn, J.S., Yoon, H., Lee, K.T., Camaratta, M.A., and Wachsman, E.D.: Performance of IT-SOFC with Ce0.9Gd0.1O1.95 functional layer at the interface of Ce0.9Gd0.1O1.95 electrolyte and Ni-Ce0.9Gd0.1O1.95 anode. Fuel Cells 9, 643 (2009).CrossRefGoogle Scholar
99.Ai, N., Lu, Z., Chen, K.F., Huang, X.Q., Du, X.B., and Su, W.H.: Effects of anode surface modification on the performance of low temperature SOFCs. J. Power Sources 171, 489 (2007).CrossRefGoogle Scholar
100.Haslam, J.J., Pham, A.Q., Chung, B.W., DiCarlo, J.F., and Glass, R.S.: Effects of the use of pore formers on performance of an anode supported solid oxide fuel cell. J. Am. Ceram. Soc. 88, 513 (2005).CrossRefGoogle Scholar
101.Ai, N., Lu, Z., Tang, J.K., Chen, K.F., Huang, X.Q., and Su, W.H.: Improvement of output performance of solid oxide fuel cell by optimizing Ni/samaria-doped ceria anode functional layer. J. Power Sources 185, 153 (2008).CrossRefGoogle Scholar
102.Stover, D., Buchkremer, H.P., and Uhlenbruck, S.: Processing and properties of the ceramic conductive multilayer device solid oxide fuel cell (SOFC). Ceram. Int. 30, 1107 (2004).CrossRefGoogle Scholar
103.Kim, S.D., Hyun, S.H., Moon, J., Kim, J.H., and Song, R.H.: Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells. J. Power Sources 139, 67 (2005).CrossRefGoogle Scholar
104.Wanzenberg, E., Tietz, F., Panjan, P., and Stover, D.: Influence of pre- and post-heat treatment of anode substrates on the properties of DC-sputtered YSZ electrolyte films. Solid State Ionics 159, 1 (2003).CrossRefGoogle Scholar
105.Lee, K.T., Yoon, H.S., Ahn, J.S., and Wachsman, E.D.: Bimodally integrated Ni-Gd0.1Ce0.9O1.95 anode functional layer for lower temperature SOFCs. Int. J. Hydrogen Energy (2012, submitted).Google Scholar
106.Sun, C.W. and Stimming, U.: Recent anode advances in solid oxide fuel cells. J. Power Sources 171, 247 (2007).CrossRefGoogle Scholar
107.Murray, E.P., Tsai, T., and Barnett, S.A.: A direct-methane fuel cell with a ceria-based anode. Nature 400, 649 (1999).CrossRefGoogle Scholar
108.Zhan, Z.L. and Barnett, S.A.: An octane-fueled solid oxide fuel cell. Science 308, 844 (2005).CrossRefGoogle ScholarPubMed
109.Yang, L., Wang, S.Z., Blinn, K., Liu, M.F., Liu, Z., Cheng, Z., and Liu, M.L.: Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-delta. Science 326, 126 (2009).CrossRefGoogle Scholar
110.Park, S.D., Vohs, J.M., and Gorte, R.J.: Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265 (2000).CrossRefGoogle Scholar
111.Gorte, R.J. and Vohs, J.M.: Nanostructured anodes for solid oxide fuel cells. Curr. Opin. Colloid Interface Sci. 14, 236 (2009).CrossRefGoogle Scholar
112.Pena-Martinez, J., Marrero-Lopez, D., Ruiz-Morales, J.C., Savaniu, C., Nunez, P., and Irvine, J.T.S.: Anodic performance and intermediate temperature fuel cell testing of La0.75Sr0.25Cr0.5Mn0.5O3-delta at lanthanum gallate electrolytes. Chem. Mater. 18, 1001 (2006).CrossRefGoogle Scholar
113.Fu, Q.X., Tietz, F., and Stover, D.: La0.4Sr0.6Ti1-xMnxO3-delta perovskites as anode materials for solid oxide fuel cells. J. Electrochem. Soc. 153, D74 (2006).CrossRefGoogle Scholar
114.Huang, Y.H., Dass, R.I., Xing, Z.L., and Goodenough, J.B.: Double perovskites as anode materials for solid-oxide fuel cells. Science 312, 254 (2006).CrossRefGoogle ScholarPubMed
115.Lee, K.T., Gore, C.M., and Wachsman, E.D.: Performance of lower temperature solid oxide fuel cells operating on reformed hydrocarbon fuels. J. Power Sources (2012, submitted).Google Scholar
116.Lee, K.T., Jung, D.W., Yoon, H.S., Camaratta, M., Sexson, N., and Wachsman, E.: High performance LSM-ESB cathode on ESB electrolyte for low to intermediate temperature solid oxide fuel cells. ECS Trans. 35, 1861 (2011).CrossRefGoogle Scholar