Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T21:17:21.907Z Has data issue: false hasContentIssue false

Evidence for self-sustained MoSi2 formation during room-temperature high-energy ball milling of elemental powders

Published online by Cambridge University Press:  31 January 2011

E. Ma
Affiliation:
Department of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48109-2104
J. Pagán
Affiliation:
Department of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48109-2104
G. Cranford
Affiliation:
Department of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48109-2104
M. Atzmon
Affiliation:
Department of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48109-2104
Get access

Abstract

We present evidence indicating that rapid, self-sustained, high-temperature reactions play an important role in the formation of tetragonal MoSi2 during room-temperature high-energy ball milling of elemental powders. Such reactions appear to be ignited by mechanical impact in an intimate, fine-grained, Mo–Si physical mixture formed after an initial milling period. Under certain conditions, limited propagation of self-sustained reactions in these uncompacted powder mixtures renders the compound formation seemingly gradual in bulk-averaged analysis. It is suggested that this type of reaction is an important mechanism in the mechanical alloying of highly exothermic systems. Results are discussed in comparison with similar reactions we observed in ball-milled Al–Ni powders, with self-sustained combustion synthesis previously reported for Mo–Si powders, and with interfacial diffusional reactions in Mo–Si powders or thin-film diffusion couples.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shobu, K., Tsuji, K., and Watanabe, T., Mater. Sci. Forum 34, 675 (1988).Google Scholar
2Wehrman, R., in High Temperature Materials and Technology, edited by Campbell, I. E. and Sherwood, E. M. (John Wiley, New York, 1967), p. 399.Google Scholar
3Aronsson, B., Lundstrom, T., and Rundqvist, S., Borides, Silicides and Phosphides (John Wiley, New York, 1965).Google Scholar
4Gac, F. D. and Petrovic, J. J., J. Am. Ceram. Soc. 68, C200 (1985).CrossRefGoogle Scholar
5Deevi, S. C., J. Mater. Sci. 26, 3343 (1991).Google Scholar
6Zhang, S. and Munir, Z.A., J. Mater. Sci. 26, 3685 (1991).Google Scholar
7Schwarz, R. B., Srinivasan, S. R., Petrovic, J. J., and Maggiore, C. J., Mater. Sci. Eng. A 155, 75 (1992).Google Scholar
8Atzmon, M., Phys. Rev. Lett. 64, 487 (1990).CrossRefGoogle Scholar
9Atzmon, M., in Solid State Powder Processing, edited by AClauer, . H. and deBarbadillo, J. J. (The Minerals, Metals and Materials Society, Warrendale, PA, 1990), p. 173; and also Mater. Sci. Eng. A 134, 1326 (1991).Google Scholar
10Koch, C.C., Ann. Rev. Mater. Sci. 19, 121 (1989); and C.C. Koch, in Materials Science and Technology, edited by R. W. Cahn, P. Haassen, and E.J. Kramer (VCH, Weinheim, 1991), Vol. 15, p. 193.CrossRefGoogle Scholar
11Powder Diffraction File, edited by Jenkins, R. (International Center for Diffraction Data, formerly the Joint Committee on Powder Diffraction Standards, Swarthmore, PA).Google Scholar
12Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Appl. Phys. 65, 305 (1989).CrossRefGoogle Scholar
13Gaffet, E., Faudot, F., and Harmelin, M., Mater. Sci. Forum 88–90, 375 (1992).Google Scholar
14Yan, Z. H., private communication; Leonard, R. T. and Koch, C. C., Nanostruct. Mater. 1, 471 (1992).Google Scholar
15Atzmon, M., Ma, E., and Koch, C.C., unpublished results.Google Scholar
16Binary Alloy Phase Diagrams, edited by Massalski, T. B. (ASM, Metals Park, OH, 1986), Vol. 2, p. 1632; and P. Villars and D. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1985), Vol. IV, p. 4459.Google Scholar
17Baglin, J. E.E., Dempsey, J., Hammer, W., d'Heurle, F.M., Petersson, C.S., and Serrano, O., J. Electron. Mater. 8, 641 (1979).CrossRefGoogle Scholar
18d'Heurle, F.M., Petersson, C.S., and Tsai, M.Y., J. Appl. Phys. 51, 5976 (1980).Google Scholar
19Cheng, J. Y., Cheng, H.C., and Chen, L. J., J. Appl. Phys. 61, 2218 (1987).Google Scholar
20Holloway, K., Do, K. B., and Sinclair, R., J. Appl. Phys. 65, 474 (1989).CrossRefGoogle Scholar
21Loopstra, O. B., Ph.D. Thesis, Technische Universiteit Delft, The Netherlands, 1992.Google Scholar
22Matteiss, L. F., Phys. Rev. B 45, 3252 (1992).Google Scholar
23Schwarz, R. B. and Koch, C. C., Appl. Phys. Lett. 49, 146 (1986).CrossRefGoogle Scholar
24Atzmon, M., Unruh, K. M., and Johnson, W. L., J. Appl. Phys. 58, 3865 (1985).CrossRefGoogle Scholar
25Schwarz, R. B., Petrich, R. R., and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).CrossRefGoogle Scholar
26Eckert, J., Schultz, L., Hellstern, E., and Urban, K., J. Appl. Phys. 64, 3224 (1988).CrossRefGoogle Scholar
27Bowden, F. P. and Yoffee, A. D., Initiation and Growth of Explosion in Liquids and Solids (Cambridge University Press, Cambridge, 1952).CrossRefGoogle Scholar
28Highmore, R. J., Somekh, R. E., Evetts, J.E., and Greer, A. L., J. Less-Comm. Met. 140, 353 (1988).CrossRefGoogle Scholar
29Ma, E. and Atzmon, M., Mod. Phys. Lett. B 6, 127 (1992).CrossRefGoogle Scholar