Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T23:39:57.486Z Has data issue: false hasContentIssue false

Evidence for a nucleation barrier in the amorphous phase formation by solid-state reaction of Ni and single-crystal Zr

Published online by Cambridge University Press:  29 June 2016

A.M. Vredenberg
Affiliation:
FOM-Insitute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
J. F. M. Westendorp
Affiliation:
FOM-Insitute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
F. W. Saris
Affiliation:
FOM-Insitute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
N. M. van der Pers
Affiliation:
Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Th.H. de Keijser
Affiliation:
Laboratory of Metallurgy, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft, The Netherlands
Get access

Abstract

In an ultrahigh vacuum (UHV) environment, thin poly crystalline Ni films have been deposited on a Zr (112) single-crystal surface. In contrast to the case of poly crystalline Ni and Zr films, formation of amorphous Ni—Zr is not observed upon annealing at 300 °C for 11.5 h. The possible presence of an oxide or an amorphous phase diffusion barrier is ruled out and therefore the lack of a reaction must be due to a reaction barrier at the single-crystal Zr/ Ni interface. Either ion mixing of the interface with 400 keV, 5 × 1015 Xe+ /cm2, or deposition of a poly crystalline Zr layer in between the Zr single crystal and the Ni overlayer can overcome this reaction barrier. These results indicate that grain boundaries in polycrystalline Zr play an important role in amorphous Ni—Zr formation by a solid-state reaction.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
2Herd, S., Tu, K. N., and Ahn, K. Y., Appl. Phys. Lett. 42, 597 (1983).CrossRefGoogle Scholar
3Schwarz, R. B., Wong, K. L., Johnson, W. L., and Clemens, B. M., J. Non-Cryst. Solids 61-62, 129 (1984).CrossRefGoogle Scholar
4Van Rossum, M., Nicolet, M-A., and Johnson, W. L., Phys. Rev. B 29, 5498 (1984).Google Scholar
5Schroder, H., Samwer, K., and Koster, U., Phys. Rev. Lett. 54, 19 (1985).Google Scholar
6Johnson, W. L., Dolgin, B., and Van Rossum, M., Proceedings of the NATO Advanced Study Institute, Tenerife, April 1984.Google Scholar
7Barbour, J. C., Saris, F. W., Nastasi, M., and Mayer, J. W., Phys. Rev. B32, 1363 (1985).Google Scholar
8Clemens, B. M., Johnson, W. L., and Schwarz, R. B., J. Non-Cryst. Solids 61-62, 817 (1984).CrossRefGoogle Scholar
9Barbour, J. C., Phys. Rev. Lett. 48, 1436 (1986).Google Scholar
10Newcomb, S. B. and Tu, K. N., Appl. Phys. Lett. 48, 1436 (1986).Google Scholar
11Leclaire, A. D., J. Nucl. Mater. 69-70, 70 (1978).Google Scholar
12Cheng, Y.-T., Johnson, W. L., and Nicolet, M-A., Appl. Phys. Lett. 47, 800 (1985).CrossRefGoogle Scholar
13Westendorp, J. F. M., Rol, P. K., Doom, S., Kersten, H., ter Beek, J., Derks, J., Saris, F. W., van Kilsdonk, W. J., and Koudijs, R., Nucl. In-strum. Meth. (to be published).Google Scholar
14Altounian, Z., Guo-hua, Tu, and Strom-Olsen, J. O., J. Appl. Phys. 54, 3111 (1983).Google Scholar
15Atzmon, M., Verhoeven, J. D., Gibson, E. D., and Johnson, W. L., Appl. Phys. Lett. 45, 1052 (1984).CrossRefGoogle Scholar
16Barbour, J. C. (private communication).Google Scholar
17Clemens, B. M., Phys. Rev. B 33, 7615 (1986).Google Scholar