Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T00:26:43.776Z Has data issue: false hasContentIssue false

Eu3+, Bi3+ codoped Lu2O3 nanopowders: Synthesis and luminescent properties

Published online by Cambridge University Press:  16 May 2013

Angel Morales Ramírez
Affiliation:
Instituto Politécnico Nacional, CIITEC IPN, Cerrada de Cecati S/N. Col. Santa Catarina, Azcapotzalco México D.F. C.P. 02250, México
Margarita García Hernández*
Affiliation:
Departamento de Ciencias Naturales, DCNI, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Pedro Antonio de los Santos 84, 11850 México D.F., México
Jonathan Yepez Ávila
Affiliation:
Instituto Politécnico Nacional, ESIQIE, UPALM S/N Col. Lindavista, Gustavo A. Madero D.F. C.P. 07738, México
Antonieta García Murillo
Affiliation:
Instituto Politécnico Nacional, CIITEC IPN, Cerrada de Cecati S/N. Col. Santa Catarina, Azcapotzalco México D.F. C.P. 02250, México
Felipe Carrillo Romo
Affiliation:
Instituto Politécnico Nacional, CIITEC IPN, Cerrada de Cecati S/N. Col. Santa Catarina, Azcapotzalco México D.F. C.P. 02250, México
Elder de la Rosa
Affiliation:
Centro de Investigaciones en Óptica A.C, A.P. 1-94837150, León, Gto., México
Vicente Garibay Febles
Affiliation:
Instituto Mexicano del Petróleo, Programa de Ingeniería Molecular, México, DF
Joan Reyes Miranda
Affiliation:
Instituto Politécnico Nacional, CIITEC IPN, Cerrada de Cecati S/N. Col. Santa Catarina, Azcapotzalco México D.F. C.P. 02250, México
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Eu3+, Bi3+ codoped Lu2O3 powders (Eu = 2.5 at.%, Bi = 0–3.0 at.%) were prepared using the sol–gel method. Fourier transform infrared spectroscopy, x-ray diffraction, and excitation and emission spectra were carried out to characterize the synthesis, structure, and luminescent properties. The excitation spectra show a strong peak at 350–390 nm, corresponding to the Bi3+1S03P1 transition, and the emission spectra present the emission from 5D07FJ (J = 0, 1, 2, 3, 4) level of Eu3+. The intensity of the reddish emission at 612 nm was monitored as a function of the Bi3+ content and showed a light yield increment of ≈400% compared to a monodoped sample at 1.0% at. Bi3+, produced by an energy transfer process from Bi3+ to Eu3+. This was a consequence of the overlapping of the Bi3+3P11S0 emission with the f–f Eu3+ transitions.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Park, J.K., Park, S.M., Kim, C.H., Park, H.D., and Choi, S.Y.: Photoluminescence properties of the Eu3+ in La2O3. J. Mater. Sci. Lett. 20, 2231 (2001).CrossRefGoogle Scholar
Volanti, D.P., Rosa, I.L.V., Paris, E.C., Paskocimas, C.A., Pizani, P.S., Varela, P.S., and Longo, E.: The role of the Eu3+ ions in structure and photoluminescence properties of SrBi2Nb2O9 powders. Opt. Mater. 3, 995 (2009).CrossRefGoogle Scholar
Badalawa, W., Matsui, H., Osone, T., Hasuike, N., Harima, H., and Tabata, H.: Correlation between structural and luminescent properties of Eu3+-doped ZnO epitaxial layers. J. Appl. Phys. 109, 053502 (2011).CrossRefGoogle Scholar
Sun, X., Li, B., Song, L., Gong, J., and Zhang, L.: Electrospinning preparation and photophysical properties of one-dimensional (1D) composite nanofibers doped with erbium(III) complexes. J. Lumin. 130, 1343 (2010).CrossRefGoogle Scholar
Guo, H., Yin, M., Dong, N., Xu, M., Lou, L., and Zhang, W.: Effect of heat-treatment temperature on the luminescent properties of Lu2O3:Eu film prepared by Pechini sol–gel method. Appl. Surf. Sci. 243, 245 (2005).CrossRefGoogle Scholar
Zhang, H., Chen, J., and Guo, H.: Electrospinning synthesis and luminescent properties of Lu2O3:Eu3+ nanofibers. J. Rare Earths 28, 232 (2010).CrossRefGoogle Scholar
Trojan-Piegza, J. and Zych, E.: Afterglow luminescence of Lu2O3:Eu ceramics synthesized at different atmospheres. J. Phys. Chem. C 114, 4215 (2010).CrossRefGoogle Scholar
Topping, S.G. and Sarin, V.K.: Cvd Lu2O3:Eu coatings for advanced scintillators. Int. J. Refract. Met. Hard Mater 27, 498 (2009).CrossRefGoogle ScholarPubMed
Zych, E., Hrreniak, D., and Strek, W.: Spectroscopic properties of Lu2O3/Eu3+ nanocrystalline powders and sintered ceramics. J. Phys. Chem. B 106, 3805 (2002).CrossRefGoogle Scholar
Boyer, J.C., Vetrone, F., Capobianco, J.A., Speghini, A., and Bettinnelli, M.: Variation of fluorescence lifetimes and Judd-Ofelt parameters between Eu3+ doped bulk and nanocrystalline cubic Lu2O3. J. Phys. Chem. B 108, 20137 (2004).CrossRefGoogle Scholar
Brecher, C., Bartram, R.H., and Lempicki, A.: Hole traps in Lu2O3:Eu ceramic scintillators. I. Persistent afterglow. J. Lumin. 106, 159 (2004).CrossRefGoogle Scholar
Wu, X., Liang, Y., Chen, R., Liu, M., and Li, Y.: Preparation and photoluminescence properties of Y2O3:Eu, Bi phosphors by molten salt synthesis for white light-emitting diodes. J. Mater. 46, 5581 (2011).CrossRefGoogle Scholar
Cao, F., Tian, Y., Chen, Y., Xiao, L., Liu, Y., and Li, L.: Preparation and luminescent properties of novel red phosphors for white-light emitting diodes (W-LEDs) application. Mater. Sci. Semicond. Process. 12, 94 (2009).CrossRefGoogle Scholar
Liu, Y., Yang, Y., Qian, G., Wang, Z., and Wang, M.: Energy transfer processes from Tb3+ to Eu3+ in ternary chelate doped in gel glasses via in situ technique. Mater. Sci. Eng., B 137, 74 (2007).CrossRefGoogle Scholar
Kang, F., Hu, Y., Wu, H., Ju, G., Mu, Z., and Li, N.: Luminescence investigation of Eu3+-Bi3+ co-doped CaMoO4 phosphor. J. Rare Earths 29, 837 (2011).CrossRefGoogle Scholar
Zhilong, W., Yuhua, W., Jiachi, Z., and Yanghua, L.: The photoluminescence properties of Eu3+, Bi3+ co-doped yttrium oxysulfide phosphor under vacuum ultraviolet excitation. Mater. Res. Bull. 44, 1183 (2009).Google Scholar
Park, W.J., Jung, M.K., and Yoon, D.H.: Influence of Eu3+, Bi3+ co-doping content on photoluminescence of YVO4 red phosphors induced by ultraviolet excitation. Sens. Actuators, B 126, 324 (2007).CrossRefGoogle Scholar
Takeshita, S., Isobe, T., Sawayama, T., and Niikura, S.: Low-temperature wet chemical precipitation of YVO4:Bi3+, Eu3+ nanophosphors via citrate precursors. Prog. Cryst. Growth Charact. Mater. 57, 127 (2011).CrossRefGoogle Scholar
Wei, X.T., Chen, Y.H., Cheng, H.R., Yin, M., and Xu, W.: Photoluminescence characteristics and energy transfer between Bi3+ and Eu3+ in Gd2O3: Eu3+, Bi3+ nanophosphors. Appl. Phys. B 99, 763 (2010).CrossRefGoogle Scholar
Strel’tsov, A.V., Dmitrienko, V.P., Akmaeva, T.A., Kudryavstev, S.V., Dmitrienko, A.O., and Razumov, K.A.: The influence of activation of Y2O3 polycrystalline matrices by Bi3+ ions on the luminescence of Y2O3:Eu3+. Inorg. Mater. 45, 889 (2009).CrossRefGoogle Scholar
Chan, T.S., Kang, C.C., Liu, R.S., Chen, L., Liu, X.N., Ding, J.J., Bao, J., and Gao, C.: Combinatorial study of the optimization of Y2O3:Bi, Eu red phosphors. J. Comb. Chem. 9, 343 (2007).CrossRefGoogle ScholarPubMed
Neeraj, S., Kijima, N., and Cheetham, A.K.: Novel red phosphors for solid state lighting; the system BixLn1−xVO4; Eu3+/Sm3+ (Ln=Y, Gd). Solid State Commun. 131, 65 (2004).CrossRefGoogle Scholar
Brusatin, G., Giustina, G.D., Guglielmi, M., Casalbomi, M., Prosposito, P., Schutzmann, S., and Roma, G.: Direct pattern of photocurable glycidoxypropyltrimethoxysilane based sol–gel hybrid waveguides for photonic applications. Mater. Sci. Eng. 27, 1022 (2007).CrossRefGoogle Scholar
Daldosso, M., Sokolnicki, J., Kepinski, L., Legendziewicz, J., Speghini, A., and Bettinelli, M.: Preparation and optical properties of nanocrystalline Lu2O3:Eu3+ phosphors. J. Lumin. 122123, 858 (2007).CrossRefGoogle Scholar
Chen, Q., Shi, Y., Li, A.. Wang, S., Chen, J., and Shi, J.: A novel co-precipitation synthesis of a new phosphor Lu2O3:Eu3+. J. Eur. Ceram. Soc. 27, 1941 (2007).CrossRefGoogle Scholar
Nedelec, J.N.: Sol-gel processing of nanostructured inorganic scintillating materials. Nanomaterials 1, 1 (2007).Google Scholar
Hreniak, D., Zych, E., Kepinsky, L., and Strek, W.: Structural and spectroscopic studies of Lu2O3/Eu3+ nanocrystallites embedded in SiO2 sol–gel ceramics. J. Phys. Chem. Sol. 64, 111 (2003).CrossRefGoogle Scholar
Jung, Y. and Jun, L.: Sol-gel synthesis of nanocrystalline Yb3+∕Ho3+-doped Lu2O3 as an efficient green phosphor. J. Electrochem. Soc. 157, K273 (2010).Google Scholar
Ksapabutr, B., Gulari, E., and Wongkasemjit, S.: One-pot synthesis and characterization of novel sodium tris(glyco zirconate) and cerium glycolate precursors and their pyrolysis. Mater. Chem. Phys. 83, 34 (2004).CrossRefGoogle Scholar
Chi, Y. and Chuang, S.: Infrared and TPD studies of nitrates adsorbed on Tb4O7, La2O3, BaO, and MgO/γ-Al2O3. J. Phys. Chem. B 104, 4673 (2000).CrossRefGoogle Scholar
McDevitt, N.T. and Baun, W.L.: Infrared absorption study of metal oxides in the low frequency region (700–240 cm−1). Spectrochim. Acta 20, 799 (1964).CrossRefGoogle Scholar
Zhang, H., Yang, Q., Lu, S., and Shi, Z.: Structural and spectroscopic characterization of Yb3+ doped Lu2O3 transparent ceramics. Opt. Mater. 34, 969 (2012).CrossRefGoogle Scholar
Wang, N.L., Zhang, X.Y., and Wang, P.H.: Fabrication and spectroscopic characterization of Er3+:Lu2O3 transparent ceramics. Mater. Lett. 94, 5 (2013).CrossRefGoogle Scholar
Cullity, B.D.: Elements of X-Ray Diffraction, 2nd ed. (Addison-Wesley, Reading MA, 1978), p. 99.Google Scholar
Liu, X.J., Li, H.L., Xie, R.J., Hirosaki, N., Xu, X., and Huang, L.P.: Synthesis, characterization, and luminescent properties of Lu2O3:Eu phosphors. J. Lumin. 127, 469 (2007).CrossRefGoogle Scholar
Wang, Z., Zhang, W., Lin, L.. Baogui, Y., Yibing, Y., and Min, Y.: Synthesis, characterization, and luminescent properties of Lu2O3:Eu phosphors. Opt. Mater. 30, 1484 (2008).CrossRefGoogle Scholar
Takeshita, S., Isoha, T., Sawayama, T., and Nikura, S.: Effects of the homogeneous Bi3+ doping process on photoluminescence properties of YVO4:Bi3+, Eu3+ nanophosphor. J. Lumin. 129, 1067 (2009).CrossRefGoogle Scholar
Real, F., Vallet, V., Flament, J.P., and Schamps, J.: Ab initio embedded cluster study of the excitation spectrum and Stokes shifts of Bi3+-doped Y2O3. J. Chem. Phys. 127, 104705 (2007).CrossRefGoogle Scholar
Jacobsohn, L.G., Blair, M.W., Tornga, S.C., Brown, L.O., Bennett, B.L., and Muenchansen, R.E.: Y2O3:Bi nanophosphor: Solution combustion synthesis, structure, and luminescence. J. Appl. Phys. 104, 124303 (2008).CrossRefGoogle Scholar
Dhananjay, N., Nagabhushana, H., Nagabhushana, B.M., Sharma, S.C., Rudraswamy, B., Suriyamurthy, N., Shivakumara, C., and Chakradhar, R.P.S.: Synthesis, characterization, thermo- and photoluminescence properties of Bi3+ co-doped Gd2O3:Eu3+ nanophosphors. Appl. Phys. B 170, 503 (2012).CrossRefGoogle Scholar
Yulia, V., Yermolayeva, V., Tolmachev, A.V., Dobrotvorskaya, M.V., and Vovk, O.M.: Preparation and structural properties of Lu2O3:Eu3+ submicrometer spherical phosphors. J. Alloys Compd. 509, 5320 (2011).Google Scholar
Phaomei, G., Singh, W.R., Singh, N.S., and Ningthoujam, R.S.: Luminescence properties of Ce3+ co-activated LaPO4:Dy3+ nanorods prepared in different solvents and tunable blue to white light emission from Eu3+ co-activated LaPO4:Dy3+, Ce3+. J. Lumin. 34, 649 (2013).CrossRefGoogle Scholar