Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T03:35:12.695Z Has data issue: false hasContentIssue false

Erosion of amorphous nickel-phosphorus

Published online by Cambridge University Press:  31 January 2011

K. C. Goretta
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
J. L. Routbort
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
A. Mayer
Affiliation:
MST-7 and Center for Materials Science, Los Alamos National Laboratory, Los Alamos. New Mexico 87545
R. B. Schwarz
Affiliation:
MST-7 and Center for Materials Science, Los Alamos National Laboratory, Los Alamos. New Mexico 87545
Get access

Abstract

The steady-state erosion rate of electrodeposited amorphous Ni80P20 by angular alumina particles has been measured as a function of impingement angle from 15°–90°, particle velocity from 50–100 m/s, and average particle diameter from 40–390 μm. The erosion rate can be described by a power law in velocity and particle size. The erosion rates in Ni80P20 were compared to those measured for electrodeposited pure crystalline nickel. For all experimental conditions the erosion rate in the amorphous alloy exceeded that of nickel. The material removal in amorphous Ni80P20 is attributed to formation of plastic shear bands below the impact areas. For the most energetic particles the erosion leads to the formation of melt, which seems to be a consequence of the localized shear.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rajagopal, C., Mukherjee, D., and Rajagopalan, K. S., Met. Finish. J. 82, 59 (1984).Google Scholar
2Ratzker, M., Lashmore, D. S., and Pratt, K. W., Plating Surf. Finish. 73 (9), 74 (1986).Google Scholar
3Brenner, A., Couch, D. E., and Williams, E. N., J. Res. Natl. Bur. Stand. 44, 109 (1950).CrossRefGoogle Scholar
4Safranek, W. H., in The Properties of Electrodeposited Metals and Alloys (American Electroplating and Surface Finishing Society, Orlando FL, 1986), 2nd ed., p. 346.Google Scholar
5Ruff, A. W. and Lashmore, D. S. in Selection and use of Wear Testsfor Coatings, edited by Bayer, R. G. (American Society for Testing and Materials, Philadelphia, 1982), p. 134.CrossRefGoogle Scholar
6Wiederhorn, S. M. and Hockey, B. J., J. Mater. Sci. 18, 766 (1983).CrossRefGoogle Scholar
7Preece, C. M. and MacMillan, N. H., Ann. Rev. Mater. Sci. 7, 95 (1977).CrossRefGoogle Scholar
8Schuh, Dana F., Masters thesis, Massachusetts Institute of Technology, 1978.Google Scholar
9Mayer, A., Staudhammer, K. P., and Johnson, K. A., Plating Surf. Finish. 72, 76 (1985).Google Scholar
10Kosel, T. H., Scattergood, R. O., and Turner, A. P. L., in the Proceedings of the International Conference on Wear of Materials, Worcester, MA, 1979, edited by Ludema, K. C., Glasser, W. A., and Rhee, S. K. (American Society of Mechanical Engineers, New York, 1979), p. 192.Google Scholar
11Morrison, C. T., Scattergood, R. O., and Routbort, J. L., Wear 111, 1 (1986).CrossRefGoogle Scholar
12Evans, A. G., Gulden, M. E., and Rosenblatt, M., Proc. R. Soc. London, Ser. A 361, 343 (1978).Google Scholar
13Wiederhorn, S. M. and Lawn, B. R., J. Am. Ceram. Soc. 62, 66 (1979).CrossRefGoogle Scholar
14Li, J. C. M., in Metallic Glasses (American Society for Metals, Metals Park, OH, 1978), p. 224.Google Scholar
15Sundararajan, G. and Shewmon, P. G., Wear 84, 237 (1983).CrossRefGoogle Scholar
16Wallner, H., Z. Phys. 114, 368 (1939).CrossRefGoogle Scholar
17Kerkhof, F., Naturwissenschaften 40, 478 (1953).CrossRefGoogle Scholar
18Kerkhof, F., in the Proceedings of the 3rd International Congress on High Speed Photography, London, 1956, edited by Collins, R. B. (Butterworths, London, 1957), p. 194.Google Scholar