Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T05:35:24.506Z Has data issue: false hasContentIssue false

Equation of state of polycrystalline Ni50Al50

Published online by Cambridge University Press:  31 January 2011

J. W. Otto
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
J. K. Vassiliou
Affiliation:
Department of Physics, Villanova University, Villanova, Pennsylvania 19085
G. Frommeyer
Affiliation:
Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
Get access

Abstract

Polycrystalline Ni50Al50 suitable for high pressure studies was prepared by grinding and subsequent annealing of an inert-gas atomized alloy. The equation of state was determined by energy-dispersive x-ray diffraction in a diamond anvil cell to 25 GPa. The bulk modulus Bo and the pressure derivative of the bulk modulus Bo were found to be Bo = 156 ± 3 GPa and Bo = 4.0 ± 0.5.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Taylor, A. and Doyle, N. J., J. Appl. Cryst. 5, 201 (1972).CrossRefGoogle Scholar
2.Nash, P., Singleton, M. F., and Murray, J. L., Phase Diagrams of Binary Nickel Alloys, edited by Nash, P. (ASM INTERNATIONAL, Materials Park, OH, 1991), Vol. 1.Google Scholar
3.Brumm, M. W. and Grabke, H. J., Corros. Sci. 33, 16771690 (1992).CrossRefGoogle Scholar
4.Hahn, K. H. and Vedula, K., Scripta Metall. 23, 7 (1989).CrossRefGoogle Scholar
5.Ball, A. and Smallman, R. E., Acta Metall. 14, 1349 (1966).CrossRefGoogle Scholar
6.Miracle, D. B. and Darolia, R., in Intermetallic Compounds, edited by Westbrook, J. H. and Fleisher, R. L. (John Wiley & Sons, 1994), Vol. 2, p. 53.Google Scholar
7.Zou, J. and Fu, C. L., Phys. Rev. B 51, 2115 (1995).CrossRefGoogle Scholar
8.Lui, S-C., Davenport, J. W., Zehner, D. M., and Fernando, B. W., Phys. Rev. B 42, 1582 (1990).CrossRefGoogle Scholar
9.Fox, A. G. and Tabbernor, M. A., Acta Metall. Mater. 39, 669 (1991).CrossRefGoogle Scholar
10.Hong, T. and Freeman, A. J., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991).Google Scholar
11.Fu, C. L. and Yoo, M. H., Acta Metall. 40, 703 (1992).CrossRefGoogle Scholar
12.Sundarajan, V., Sahy, B. R., Kanhere, D. G., Panat, P. V., and Das, G. P., J. Phys.: Condens. Matter 7, 6019 (1995).Google Scholar
13.Ball, A. and Smallmann, R. E., Acta Metall. 14, 1517 (1966).CrossRefGoogle Scholar
14.Wasilewski, R. J., Trans. TMS AIME 236, 455 (1966).Google Scholar
15.Mao, H. K. and Bell, P. M., Carnegie Inst. Washington Yearb. 75, 824 (1976).Google Scholar
16.Syassen, K. and Holzapfel, W. B., Europhys. Conf. Abstr. 1A, 75 (1975).Google Scholar
17.Brister, K., Rev. Sci. Instrum. 63, 995 (1991).CrossRefGoogle Scholar
18.Otto, J. W., Nucl. Instrum. Methods A384, 552 (1997).CrossRefGoogle Scholar
19.Otto, J. W., J. Appl. Cryst. (1997, in press).Google Scholar
20.Cooper, M. J., Philos. Mag. 5, 805 (1963).CrossRefGoogle Scholar
21.Kuhrt, C., Schröpf, H., Schultz, L., and Arzt, E., Proc. 2nd Int. Conf. on Structural Applications and Mechanical Alloying, 269 (1993).Google Scholar
22.Gialanella, S., Guella, M., Baro, M. D., Malagelada, J., and Suriñach, S., Proc. 2nd Int. Conf. on Structural Applications and Mechanical Alloying, 321 (1993); L. Lutteroti, S. Gialanella, and R. Caudron, Mater. Sci. Forum 228–231, 551 (1996).Google Scholar
23.Börner, I. and Eckert, J., Mater. Sci. Forum 225–227, 377 (1996).CrossRefGoogle Scholar
24.Klug, H. P. and Alexander, L. R., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley, New York, 1974).Google Scholar
25.Langford, J. I., Delhez, R., Th. de Keijser, H., and Mittemeijer, E. J., Austr. J. Phys. 41, 173 (1988).CrossRefGoogle Scholar
26.Singh, A. K., J. Appl. Phys. 73, 4278 (1993).CrossRefGoogle Scholar
27.Otto, J. W., Vassiliou, J. K., and Frommeyer, G., J. Synchrotron Rad. 4, 155 (1997).CrossRefGoogle Scholar
28.Kinsland, G. L. and Bassett, W. A., J. Appl. Phys. 48, 978 (1977).CrossRefGoogle Scholar
29.Birch, F., J. Geophys. Res. 83, 1257 (1978).CrossRefGoogle Scholar
30.Decker, D. L., J. Appl. Phys. 42, 3239 (1971).CrossRefGoogle Scholar
31.Mao, H. K., Bell, P. M., Shaner, J. W., and Steinberg, D. J., J. Appl. Phys. 49, 3276 (1978).CrossRefGoogle Scholar
32.Mehl, M. J., Klein, B. M., and Papaconstatopoulos, D. A., in Intermetallic Compounds, edited by Westbrook, J. H. and Fleisher, R. L. (John Wiley & Sons, 1994), Vol. 1, p. 195.Google Scholar
33.Mehl, M. J., Osburn, J. E., Papaconstatopoulos, D. A., and Klein, B. M., Phys. Rev. B41, 10311 (1990).CrossRefGoogle Scholar