Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T22:48:25.808Z Has data issue: false hasContentIssue false

Epitaxial Y1Ba2Cu3O7−δ thin films with (103)/(110)- and (100)/(010)-orientation on NdGaO3 and SrTiO3 substrates grown by ion-beam sputter deposition

Published online by Cambridge University Press:  03 March 2011

J-P. Krumme
Affiliation:
Philips GmbH Forschungslaboratorien, Forschungsabteilung Technische Systeme Hamburg, Röntgenstr. 24-26, D-22335 Hamburg, Germany
V. Doormann
Affiliation:
Philips GmbH Forschungslaboratorien, Forschungsabteilung Technische Systeme Hamburg, Röntgenstr. 24-26, D-22335 Hamburg, Germany
F. Welz
Affiliation:
Philips GmbH Forschungslaboratorien, Forschungsabteilung Technische Systeme Hamburg, Röntgenstr. 24-26, D-22335 Hamburg, Germany
R. Eckart
Affiliation:
Philips GmbH Forschungslaboratorien, Forschungsabteilung Technische Systeme Hamburg, Röntgenstr. 24-26, D-22335 Hamburg, Germany
O. Dössel
Affiliation:
Philips GmbH Forschungslaboratorien, Forschungsabteilung Technische Systeme Hamburg, Röntgenstr. 24-26, D-22335 Hamburg, Germany
W. Dingen
Affiliation:
N. V. Philips, Natuurkundig Laboratorium, P.O. Box 80000, NL-5600JA Eindhoven, The Netherlands
K. Schiffmann
Affiliation:
Fraunhofer Institut für Schicht- und Oberflächentechnik, Vogt-Köllnstr. 30, D-22527 Hamburg, Germany
Get access

Abstract

A fully oxygen-compatible ion-beam sputter deposition process (IBS) has been implemented for investigation of four film/substrate couples: (103)/(110)YBCO on (110)SrTiO3 (STO) and on (100)NdGaO3 (NGO), and (100)/(010)YBCO on (110)NGO and on (100)STO. For comparison, some (103)/(110)YBCO films have also been prepared by off-axis rf-magnetron sputtering. Below about 600 °C semiconducting, sub-nm flat, and perfectly single-crystalline YBCO films crystallize on these substrates with a crystallographic unit cell of about 1/3 of the Cu-O subcell of YBCO and perfect registration with the Ti4+-O and Ga3+-O sublattice of STO and NGO, respectively. At higher temperature superconducting YBCO films grow coherently epitaxially in the first ∼100 nm thickness; in thicker films the lattice-misfit strain relaxes to the “free” lattice constants. Above ∼680 °C a faceted (103)YBCO orientation grows on (110)STO and (100)NGO substrates with uniform in-plane orientation of the [010]YBCO direction parallel to [001]STO and [001]NGO. Along [010]YBCO the (103)YBCO films exhibit high crystalline perfection and intrinsic superconducting properties approaching those of (001)YBCO films in the plane; i.e., Tc,0 > 88 K, ΔTc,0 < 0.6 K, R300/R100 > 2.9, ρ100 > 250 μ°Cm, and jc (77 K) ⋚106 A/cm2. Practical use of (103)YBCO films is hampered by the large surface roughness. Above ∼680 °C a mixed (100)/(010)YBCO orientation grows on (110)NGO substrates, exhibiting a very smooth surface but less attractive superconducting properties; typically, Tc,0 ⋚ 80 K, ΔTc,0 ∼ 1 K, R300/R100 ∼ 1.2, ρ100 > 3 m°Cm, and jc (77 K) ⋚105 A/cm2. On (100)STO substrates the YBCO film orientation varies from pure (100)YBCO between ∼580 and ∼630 °C and mixed (100)/(010)YBCO below ∼660 °C to pure (001) YBCO above ∼670 °C. With rising temperature the surface roughness increases from <2 to ∼6 nm-rms, while the other parameters continuously improve to state-of-the-art values for c⊥-oriented films. Specifically, mixed (100)/(010)YBCO films reach Tc,0 > 86 K, δc,0 ∼ 1 K, R300/R100 > 2.8, ρ100 < 3 m°Cm, and jc (77 K) > 105 A/cm2. (100)/(010)YBCO films on (100)STO are a promising candidate for sandwich-type SIS-JJ.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Eom, C. B., Marshall, A. F., Suzuki, Y., Geballe, T. H., Boyer, B., Pease, R. F. W., van Dover, R.B., and Phillips, J.M., Phys. Rev. 46, 11902 (1992).CrossRefGoogle Scholar
2Marshall, A. F. and Eom, C. B., Physica C 207, 239 (1993).CrossRefGoogle Scholar
3Akoh, H., Kohjiro, S., Camerlingo, C., Yuasa, R., and Takada, S., Physica C 180, 227 (1991).CrossRefGoogle Scholar
4Sato, H., Akoh, H., Aoyagi, M., and Takada, S., Advances in Superconductivity VI (Springer-Verlag, Tokyo, 1994), Vol. 2, p. 1063; Sato, H., Akoh, H., and Takada, S., IEEE Trans. Appl. Supercond. 3, 2377 (1993).CrossRefGoogle Scholar
5Habermeier, H. U., Lourenco, A. A. C.S., Friedl, B., Kirchner, J., and Kohler, J., Solid-State Commun. 77, 683 (1991).CrossRefGoogle Scholar
6Zheng, J. P., Dong, S. Y., Bhattacharya, D., and Kwok, H. S., J. Appl. Phys. 70, 7167 (1991).CrossRefGoogle Scholar
7Bamer, J. B., Rogers, C. T., Inam, A., Ramesh, R., and Bersey, S., Appl. Phys. Lett. 59, 742 (1991).Google Scholar
8Mukaida, M. and Miyazawa, S., Jpn. J. Appl. Phys. 31, 3317 (1992).CrossRefGoogle Scholar
9Mukaida, M., Miyazawa, S., and Sasaura, M., J. Appl. Phys. 69, 3399 (1991).CrossRefGoogle Scholar
10Young, K. H. and Sun, J. Z., Appl. Phys. Lett. 59, 2448 (1991).CrossRefGoogle Scholar
11Ling, S. H., Au, W. S., Tang, Y. S., and Kwok, H. S., J. Appl. Phys. 72, 4981 (1992).CrossRefGoogle Scholar
12Boikov, Y., Brorsson, G., Claeson, T., and Ivanov, Z. G., Appl. Phys. Lett. 59, 2606 (1991).CrossRefGoogle Scholar
13Krumme, J. P., Hack, R. A. A., and Raaijmakers, I. J. M. M., J. Appl. Phys. 70, 6743 (1991).CrossRefGoogle Scholar
14Mahajan, S., Ito, W., Yoshida, Y., and Morishita, T., Physica C 213, 445 (1993).CrossRefGoogle Scholar
15Sodtke, E. and Münder, H., Appl. Phys. Lett. 60, 1630 (1992).CrossRefGoogle Scholar
16Asano, H., Asahi, M., Suzuki, M., and Kimachi, Y., IEEE Trans. Appl. Supercond. 3, 1290 (1993).CrossRefGoogle Scholar
17Ito, W., Oishi, A., Mahajan, S., Yoshida, Y., and Morishita, T., Advances in Superconductivity VI (Springer-Verlag, Tokyo, 1994), Vol. 2, p. 999.CrossRefGoogle Scholar
18Takahashi, H., Homma, N., Okayama, S., and Morishita, T., Physica C 193, 385 (1992).CrossRefGoogle Scholar
19Nakamura, O., Guimpel, J., Sharifi, F., Dynes, R. C., and Schuller, I. K., Appl. Phys. Lett. 61, 2598 (1992).CrossRefGoogle Scholar
20Ito, W., Oishi, A., Okayama, S., Yoshida, Y., Homma, N., and Morishita, T., Physica C 204, 295 (1993).CrossRefGoogle Scholar
21Sodtke, E., Miinder, H., and Braginski, A. I., Physica C 204, 375 (1993).CrossRefGoogle Scholar
22Ito, W., Okayama, S., Homma, N., Oishi, A., and Morishita, T., Appl. Phys. Lett. 62, 312 (1993).CrossRefGoogle Scholar
23Kobayashi, J., Tazoh, Y., Mukaida, M., and Miyazawa, S., Physica C 185–189, 2039 (1991).CrossRefGoogle Scholar
24Tazoh, Y. and Miyazawa, S., Appl. Phys. Lett. 62, 408 (1993).CrossRefGoogle Scholar
25Tröger, L., Fork, D. K., and Boyce, J. B., J. Appl. Phys. 72, 4816 (1992).CrossRefGoogle Scholar
26Hashimoto, T., Sagoi, M., Mizutani, Y., Yoshida, J., and Mizushima, K., IEEE Trans. Appl. Supercond. 3, 2385 (1993).CrossRefGoogle Scholar
27Umezawa, T., Lew, D. J., Streiffer, S. K., and Beasley, M. R., Appl. Phys. Lett. 63, 3221 (1993).CrossRefGoogle Scholar
28Hontsu, S., Mukai, N., Ishii, J., Kawai, T., and Kawai, S., Appl. Phys. Lett. 63, 1576 (1993).CrossRefGoogle Scholar
29Hashimoto, T., Sagoi, M., Mizutani, Y., Yoshida, J., and Mizushima, K., Appl. Phys. Lett. 60, 1756 (1992).CrossRefGoogle Scholar
30Lew, D., Suzuki, Y., Eom, C. B., Lee, M., Triscone, J-M., Geballe, T. H., and Beasley, M. R., Physica C 185–189, 2553 (1991).CrossRefGoogle Scholar
31Mukaida, M.Tazoh, Y., Kobayashi, J., and Miyazawa, S., 4th Int. Supercond. Electron. Conf., Boulder, CO (1993), p. 197.Google Scholar
32Chin, C. C., Takahashi, H., Morishita, T., and Sugimoto, T., I. Mater. Res. 8, 951 (1993).CrossRefGoogle Scholar
33Giess, E. A., Sandstrom, R. L., Gallagher, W. J., Gupta, A., Shinde, S. L., Cook, R. F., Cooper, E. I., O'Sullivan, E.J.M., Roldan, J. M., Segmiiller, A. P., and Agilello, J., IBM J. Res. Dev. 34, 916 (1990).CrossRefGoogle Scholar
34Sasaura, M., Miyazawa, S., and Mukaida, M., J. Appl. Phys. 68, 3643 (1990).CrossRefGoogle Scholar
35Gauzzi, A., Lucia, M. L., Kellett, B. J., Lames, J.H., and Pavuna, D., Physica C 182, 57 (1991).CrossRefGoogle Scholar
36Krumme, J-P., Doormann, V., Welz, F., Dossel, O., and van Hal, H., J. Mater. Res. 9, 27472760 (1994).CrossRefGoogle Scholar
37Grundler, D., Krumme, J-P., David, B., and Dossel, O., Appl. Phys. Lett. 65 (1994), October 3.Google Scholar