Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T20:55:51.284Z Has data issue: false hasContentIssue false

Epitaxial Ti2GeC, Ti3GeC2, and Ti4GeC3 MAX-phase thin films grown by magnetron sputtering

Published online by Cambridge University Press:  01 April 2005

H. Högberg
Affiliation:
Linköping University, Department of Physics IFM, Thin Film Physics Division, SE-58183 Linköping, Sweden
P. Eklund
Affiliation:
Linköping University, Department of Physics IFM, Thin Film Physics Division, SE-58183 Linköping, Sweden
J. Emmerlich
Affiliation:
Linköping University, Department of Physics IFM, Thin Film Physics Division, SE-58183 Linköping, Sweden
J. Birch
Affiliation:
Linköping University, Department of Physics IFM, Thin Film Physics Division, SE-58183 Linköping, Sweden
L. Hultman
Affiliation:
Linköping University, Department of Physics IFM, Thin Film Physics Division, SE-58183 Linköping, Sweden
Get access

Abstract

We have grown single-crystal thin films of Ti2GeC and Ti3GeC2 and a new phase Ti4GeC3, as well as two new intergrown MAX-structures, Ti5Ge2C3 and Ti7Ge2C5. Epitaxial films were grown on Al2O3(0001) substrates at 1000 °C using direct current magnetron sputtering. X-ray diffraction shows that Ti–Ge–C MAX-phases require higher deposition temperatures in a narrower window than their Ti–Si–C correspondences do, while there are similarities in phase distribution. Nanoindentation reveals a Young’s modulus of 300 GPa, lower than that of Ti3SiC2. Four-point probe measurements yield resistivity values of 50–200 μΩcm. The lowest value is obtained for phase-pure Ti3GeC2(0001) films.

Type
Rapid Communication
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Barsoum, M.W.: The M n+1AX n phases: A new class of solids. Prog. Solid State Chem. 28, 201 (2000).CrossRefGoogle Scholar
2. Nowotny, H.: Strukturchemie einiger Verbindungen der Übergangsmetalle mit den Elementen C, Si, Ge, Sn. Prog. Solid State Chem. 2, 27 (1970).Google Scholar
3. Jeitschko, W. and Nowotny, H.: Die Kristallstruktur von Ti3SiC2-ein neuer Komplexcarbid-Typ. Monatsh. Chem. 98, 329 (1967).CrossRefGoogle Scholar
4. Zhou, Y., Sun, Z., Wang, X. and Chen, S.: Ab initio geometry optimization and ground-state properties of layered ternary carbides Ti3MC2 (M=Al, Si and Ge). J. Phys. Condens. Matter 13, 10001 (2001).CrossRefGoogle Scholar
5. Palmquist, J-P., Jansson, U., Seppänen, T., Persson, P.O.Å., Birch, J., Hultman, L. and Isberg, P.: Magnetron sputtered epitaxial single-phase Ti3SiC2 thin films. Appl. Phys. Lett. 81, 835 (2002).CrossRefGoogle Scholar
6. Seppänen, T., Palmquist, J-P., Persson, P.O.Å., Emmerlich, J., Molina-Aldareguia, J.M., Birch, J., Jansson, U., Isberg, P., and Hultman, L.: Structural characterization of epitaxial Ti3SiC2 films, in SCANDEM Conference Proceedings, edited by Keränen, Jaakko and Sillanpää, Katri, Tampere, Finland (2002), pp. 142143.Google Scholar
7. Palmquist, J-P., Li, S., Persson, P.O.Å., Emmerlich, J., Wilhelmsson, O., Högberg, H., Katsnelsson, M., Johansson, B., Ahuja, R., Eriksson, O., Hultman, L. and Jansson, U.: New MAX phases in the Ti–Si–C system studied by thin film syntheis and ab initio calculations. Phys. Rev. B 70, 165401 (2004).CrossRefGoogle Scholar
8. Emmerlich, J., Palmquist, J-P., Högberg, H., Molina-Aldareguia, J.M., Czigány, Zs., Sasvári, Sz., Persson, P.O.Å., Jansson, U. and Hultman, L.: Growth of Ti3SiC2 thin films by elemental target magnetron sputtering. J. Appl. Phys. 96, 4817 (2004).CrossRefGoogle Scholar
9. Molina-Aldareguia, J.M., Emmerlich, J., Palmquist, J-P., Jansson, U. and Hultman, L.: Kink formation around indents in laminated Ti3SiC2 thin films studied in the nanoscale. Scripta Mater. 49, 155 (2003).CrossRefGoogle Scholar
10. Wolfsgruber, H., Nowotny, H. and Benesovsky, F.: Die Kristallstruktur von Ti3GeC2 . Monatsh. Chem. 98, 2403 (1967).CrossRefGoogle Scholar
11. Kephart, J.S. and Carim, A.H.: Ternary compounds and phase equilibria in Ti–Ge–C and Ti–Ge–B. J. Electrochem. Soc. 145, 3253 (1997).CrossRefGoogle Scholar
12. Viala, J.C., Peillon, N., Bosselet, F. and Bouix, J.: Phase equilibria at 1000 °C in the Al–C–Si–Ti quaternary system: An experimental approach. Mater. Sci. Eng. A 229, 95 (1997).CrossRefGoogle Scholar
13. Wu, E., Kisi, E.H., Kennedy, S.J. and Studer, A.J.: In situ neutron powder diffraction study of Ti3SiC2 synthesis. J. Am. Ceram. Soc. 84, 2281 (2001).CrossRefGoogle Scholar
14. Riley, D.P., Kisi, E.H., Hansen, T.C. and Hewat, A.W.: Self-propagating high temperature synthesis of Ti3SiC2: 1. Ultra-high speed neutron diffraction study of the reaction mechanism. J. Am. Ceram. Soc. 85, 2417 (2002).CrossRefGoogle Scholar