Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T22:17:23.432Z Has data issue: false hasContentIssue false

Epitaxial LiNbO3 thin films on sapphire substrates grown by solid source MOCVD

Published online by Cambridge University Press:  03 March 2011

Z. Lu
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-4045 and Hewlett-Packard Corp., 3500 Deer Creek Road, Palo Alto, California 94303
R. Hiskes
Affiliation:
Hewlett-Packard Corp., 3500 Deer Creek Road, Palo Alto, California 94303
S.A. DiCarolis
Affiliation:
Hewlett-Packard Corp., 3500 Deer Creek Road, Palo Alto, California 94303
R.K. Route
Affiliation:
Center for Materials Research, Stanford University, Stanford, California 94305-4045
R.S. Feigelson
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305-4045
F. Leplingard
Affiliation:
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, California 94304
J.E. Fouquet
Affiliation:
Hewlett-Packard Corp., 3500 Deer Creek Road, Palo Alto, California 94303
Get access

Abstract

C-axis LiNbO3 epitaxial films have been grown on c-plane sapphire substrates by solid source metal-organic chemical vapor deposition (MOCVD) using the tetramethylheptanedionate sources, Li(thd) and Nb(thd)4. Stoichiometric LiNbO3 films were deposited from Li(thd)-rich source compositions. Rocking curve FWHM values as low as 0.044°were measured on films grown at 710 °C. Rocking curve peak widths became broader as films were grown at progressively lower substrate temperatures. Single prism coupling experiments revealed clearly visible optical waveguiding, with optical attenuation values as low as 2 dB/cm in the best films.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Weis, R. S. and Gaylord, T. K., Appl. Phys. A 37, 191 (1985).CrossRefGoogle Scholar
2Tamada, H., Yamada, A., and Saitoh, M., J. Appl. Phys. 70 (5), 2536 (1991).CrossRefGoogle Scholar
3Yamada, A., Tamada, H., and Saitoh, M., Appl. Phys. Lett. 61 (24), 2848 (1992).CrossRefGoogle Scholar
4Takada, S., Ohnishi, M., Hayakawa, H., and Mikoshiba, N., Appl. Phys. Lett. 24, 490 (1974).CrossRefGoogle Scholar
5Fujimura, N. and Ito, T., J. Cryst. Growth 115, 821 (1991).CrossRefGoogle Scholar
6Rost, T. A., Lin, H., Rabson, T. A., Baumann, R. C., and Callahan, D. L., J. Appl. Phys. 72 (9), 4336 (1992)CrossRefGoogle Scholar
7Shibata, Y., Kaya, K., Akashi, K., Kanai, M., Kawai, T., and Kawai, S., Appl. Phys. Lett. 61 (8), 1000 (1992).CrossRefGoogle Scholar
8Schwyn, S., Lehmann, H. W., and Widmer, R., J. Appl. Phys. 72 (3), 1154 (1992).CrossRefGoogle Scholar
9Betts, R. A. and Pitt, C. W., Electron. Lett. 21, 960 (1985).CrossRefGoogle Scholar
10Fork, D. K. and Anderson, G. B., Appl. Phys. Lett. 63 (8), 1029 (1993).CrossRefGoogle Scholar
11Marsh, A. M., Harkness, S. D., Qian, F., and Singh, R. K., Appl. Phys. Lett. 62 (9), 952 (1993).CrossRefGoogle Scholar
12Nashimoto, K. and Cima, M. J., Mater. Lett. 10, 348 (1991).CrossRefGoogle Scholar
13Curtis, B. J. and Bruner, H. R., Mater. Res. Bull. X, 515 (1975).CrossRefGoogle Scholar
14Wernberg, A. A., Gysling, H. J., Filo, A. J., and Blanton, T. N., Appl. Phys. Lett. 62 (9), 946 (1993).CrossRefGoogle Scholar
15Hiskes, R., DiCarolis, S.A., Young, J. L., Laderman, S. S., Jacowitz, R. D., and Taber, R. C., Appl. Phys. Lett. 59 (5), 606 (1991).CrossRefGoogle Scholar
16Lu, Z., Feigelson, R. S., Route, R. K., DiCarolis, S.A., Hiskes, R., and Jacowitz, R. D., J. Cryst. Growth 128, 788 (1992).CrossRefGoogle Scholar
17Hammond, G. S., Nonhebel, D. C., and Wu, C. S., Inorg. Chem. 2 (1), 73 (1963).CrossRefGoogle Scholar
18Strem Chemicals Inc., Dexter Industrial Park, 7 Mulliken Way, Newburryport, MA 09150-4098.Google Scholar
19Svaasand, L. O., Eriksrud, M., Nakken, G., and Grande, A. P., J. Cryst. Growth 22, 230 (1974).CrossRefGoogle Scholar
20Lines, M. E. and Glass, A. M., Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 1977), p. 277.Google Scholar
21Nix, W. D., Metall. Trans. A 20A, 2217 (1989).CrossRefGoogle Scholar
22Rauber, A., Current Topics in Materials Science, edited by Kaldis, E. (North-Holland Publishing Company, New York, 1978), Vol. 1, p. 481.Google Scholar
23Wachtman, J. B. Jr., Scuderi, T. G., and Cleek, G. W., J. Am. Ceram. Soc. 45 (7), 319 (1962). Note: ∆L/L were measured relative to 0 °C in this paper, and we converted it to room temperature 25 °C.CrossRefGoogle Scholar
24Hiskes, R., DiCarolis, S.A., Fouquet, J., Lu, Z., Feigelson, R. S., Route, R. K., Leplingard, F., and Foster, C. M., in Metal-organic Chemical Vapor Deposition of Electronic Ceramics (Mater. Res. Soc. Symp. Proc. 335, Pittsburgh, PA, 1994).Google Scholar