Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T00:35:55.907Z Has data issue: false hasContentIssue false

Epitaxial growth versus nucleation in amorphous Si doped with Cu and Ag

Published online by Cambridge University Press:  31 January 2011

J.S. Custer
Affiliation:
Department of Materials Science, Cornell University, Ithaca, New York 14853
Michael O. Thompson
Affiliation:
Department of Materials Science, Cornell University, Ithaca, New York 14853
D.J. Eaglesham
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
D.C. Jacobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
J.M. Poate
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The competition between solid phase epitaxy and random nucleation in amorphous Si implanted with Cu and Ag has been studied. At low metal concentrations, solid phase epitaxy proceeds with slight deviations from the intrinsic rate, with the impurity segregated and evenly distributed in the amorphous layer. At an impurity concentration of 0.12 at.%, rapid nucleation occurs, transforming the remaining layer into polycrystalline Si. The nucleation rate is ≥108 the intrinsic homogeneous rate. The effects of the metals on epitaxy scale with the amount of metal–Si interaction. Nucleation appears to occur when the metal impurities exceed their absolute solubility limit and begin to phase separate.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ohmura, Y., Matsushita, Y., and Kashiwagi, M., Jpn. J. Appl. Phys. 21, L152 (1982).CrossRefGoogle Scholar
2Streit, D., Metzger, R. A., and Allen, F. G., Appl. Phys. Lett. 44, 234 (1984).CrossRefGoogle Scholar
3Csepregi, L., Mayer, J.W., and Sigmon, T. W., Phys. Lett. 54A, 157 (1975).CrossRefGoogle Scholar
4Olson, G. L., Kokorowski, S. A., Roth, J. A., and Hess, L. D., in Laser-Solid Interactions and Transient Thermal Processing of Materials, edited by Narayan, J., Brown, W. L., and Lemons, R. A. (Mater. Res. Soc. Symp. Proc. 13, Elsevier Science Publishing, New York, 1983), p. 141.Google Scholar
5Csepregi, L., Kennedy, E.F., Gallagher, T.J., Mayer, J.W., and Sigmon, T. W., J. Appl. Phys. 48, 4234 (1977).CrossRefGoogle Scholar
6Olson, G.L. and Roth, J.A., Mater. Sci. Rep. 3, 3 (1988).CrossRefGoogle Scholar
7Williams, J. S. and Elliman, R. G., Phys. Rev. Lett. 51, 1069 (1983).CrossRefGoogle Scholar
8Park, W. W., Becker, M. F., and Walser, R. M., Appl. Phys. Lett. 52, 1517 (1988).CrossRefGoogle Scholar
9Revesz, P., Wittmer, M., Roth, J., and Mayer, J. W., J. Appl. Phys. 49, 5199 (1978); M. Wittmer, J. Roth, P. Revesz, and J. W. Mayer, J. Appl. Phys. 49, 5207 (1978).CrossRefGoogle Scholar
10Roth, J.A. and Olson, G.L., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S.T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 319.Google Scholar
11Nygren, E., Pogany, A. P., Short, K.T., Williams, J.S., Elliman, R.G., and Poate, J.M., Appl. Phys. Lett. 52, 439 (1988); E. Nygren, J. C. McCallum, R. Thornton, J. S. Williams, and G. L. Olson, in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing, edited by M. J. Aziz, L. E. Rehn, and B. Stritzker (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988), p. 405.CrossRefGoogle Scholar
12Thornton, R.P., Elliman, R.G., and Williams, J.S., J. Mater. Res. 5, 1003 (1990).CrossRefGoogle Scholar
13Cammarata, R. C., Thompson, C. V., Hayzelden, C., and Tu, K.N., J. Mater. Res. 5, 2133 (1990).CrossRefGoogle Scholar
14Poate, J.M., Jacobson, D.C., Williams, J.S., Elliman, R.G., and Boerma, D. O., Nucl. Instrum. Methods B19/20, 480 (1987).CrossRefGoogle Scholar
15Coffa, S. and Poate, J.M., unpublished research.Google Scholar
16Trumbore, F.A., Bell Syst. Tech. J. 39, 205 (1960).CrossRefGoogle Scholar
17Jacobson, D. C., Poate, J. M., and G. L. Olson, Appl. Phys. Lett. 40, 118 (1986).CrossRefGoogle Scholar
18Jacobson, D.C., Elliman, R.G., Gibson, J.M., Olson, G.L., Poate, J.M., and Williams, J. S., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S. T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 327.Google Scholar
19Elliman, R. G., Gibson, J. M., Jacobson, D. C., Poate, J. M., and Williams, J. S., Appl. Phys. Lett. 46, 478 (1985).CrossRefGoogle Scholar
20Baeri, P., Campisano, S.U., Foti, G., and Rimini, E., Phys. Rev. Lett. 41, 1246 (1978).CrossRefGoogle Scholar
21Campisano, S. U., Foti, G., Baeri, P., Grimaldi, M. G., and Rimini, E., Appl. Phys. Lett. 37, 719 (1980).CrossRefGoogle Scholar
22Olson, G. L. and Roth, J. A., private communication.Google Scholar
23Spaepen, F., Acta Metall. 26, 1167 (1978); F. Spaepen and D. Turnbull, AIP Conf. Ser. 50, 73 (1979).CrossRefGoogle Scholar
24Lu, G.Q., Nygren, E., and Aziz, M.J., J. Appl. Phys. 70, 5323 (1991).CrossRefGoogle Scholar
25Donovan, E. P., Spaepen, F., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 55, 1516 (1989).CrossRefGoogle Scholar
26Binary Alloy Phase Diagrams, edited by Massalski, T. B. (American Society for Metals, Metals Park, OH, 1986).Google Scholar
27Gaskell, D.R., Introduction to Metallurgical Thermodynamics (McGraw-Hill, New York, 1981), Chap. 11.Google Scholar
28Okamoto, H. and Massalski, T. B., Bull. Alloy Phase Diagrams 4, 190 (1983).CrossRefGoogle Scholar
29Olesinski, R. W. and Abbaschian, G. J., Bull. Alloy Phase Diagrams 7, 170 (1986).CrossRefGoogle Scholar
30Olesinski, R. W., Gokhale, A. B., and Abbaschian, G. J., Bull. Alloy Phase Diagrams 10, 635 (1989).CrossRefGoogle Scholar
31The regular solution parameter for Cu is strongly dependent on concentration, and the functional form given in Ref. 28, optimized for the entire composition range, is inappropriate close to pure 38 Si. Moreover, using this functional form to calculate the phase diagram in the absence of intermediate phases indicates that the Cu –Si eutectic temperature would be –150 C because of the very large interactions near xsi = 0.25 which lead to compound formation.Google Scholar
32Roorda, S. and Sinke, W. C., Appl. Surf. Sci. 36, 588 (1989).CrossRefGoogle Scholar
33Hall, R.N. and Racette, J.H., J. Appl. Phys. 35, 379 (1964).CrossRefGoogle Scholar
34Herd, S. R., Chaudhari, P., and Brodsky, M. H., J. Non-Cryst. Solids 7, 309 (1972).CrossRefGoogle Scholar
35Ottaviani, G., Sigurd, D., a, J.W. Mayer, and McCaldin, J. O., J. Appl. Phys. 45, 1730 (1974); D. Sigurd, G. Ot-taviani, H.J. Arnal, and J.W. Mayer, J. Appl. Phys. 45, 1740 (1974).CrossRefGoogle Scholar
36Nakamura, K., Olowolafe, J.O., Lau, S.S., Nicolet, M-A., Mayer, J.W., and Shima, R., J. Appl. Phys. 47, 1278 (1976).CrossRefGoogle Scholar
37Shewmon, P. J., Transformations in Metals (J. Williams Book Co., Jenks, OK, 1983), pp. 289293.Google Scholar
38Custer, J.S., Thompson, M.O., Eaglesham, D.J., Jacobson, D.C., Poate, J. M., Liefting, J.R., and Saris, F. W., in Kinetics of Phase Transformations, edited by Thompson, M. O., Aziz, M. J., and Stephenson, G. B. (Mater. Res. Soc. Symp. Proc. 205, Pittsburgh, PA, 1992), p. 69.Google Scholar