Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T03:58:31.198Z Has data issue: false hasContentIssue false

Epitaxial dependence of the melting behavior of In nanoparticles embedded in Al matrices

Published online by Cambridge University Press:  31 January 2011

H. W. Sheng
Affiliation:
National Key Laboratory for RSA, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
G. Ren
Affiliation:
Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
L. M. Peng
Affiliation:
Beijing Laboratory of Electron Microscopy, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
Z. Q. Hu
Affiliation:
National Key Laboratory for RSA, Institute of Metal Research, Chinese Academy of Sciences Shenyang 110015, People's Republic of China
K. Lu
Affiliation:
National Key Laboratory for RSA, and International Center for Materials Physics, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, People's Republic of China
Get access

Abstract

Nanometer-sized In particles (5−45 nm) embedded in the Al matrix were prepared by using melt-spinning and ball-milling techniques. Different crystallographic orientationships between In nanoparticles and the Al matrix were constructed by these two approaches. Melting behavior of the In particles were investigated by means of differential scanning calorimetry (DSC). It was found that the epitaxially oriented In nanoparticles (with the Al matrix) in the melt-spun sample were superheated to about 0−38 °C, whereas the randomly oriented In particles in the ball-milled sample melted below its equilibrium melting point by about 0−22 °C. We suggest that the melting temperature of In nanoparticles can be either enhanced or depressed, depending on the epitaxy between In and the Al matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wronski, C. R. M., J. Appl. Phys. 18, 1730 (1967).Google Scholar
2. Ph. Buffat and Borel, J-P., Phys. Rev. A 13, 2287 (1976), and references therein.Google Scholar
3.Boyer, L. L., Phase Trans. 5, 1 (1985), and references therein.CrossRefGoogle Scholar
4.Allen, G. L., Bayles, R. A., Gile, W. W., and Jesser, W. A., Thin Solid Films 144, 297 (1986).Google Scholar
5.David, T. Ben, Lereah, Y., Deutscher, G., Koffman, R., and Cheyssac, P., Philos. Mag. A 71, 1135 (1995).CrossRefGoogle Scholar
6.Uenishi, K., Kawaguchi, H., and Kobayashi, K. F., J. Mater. Sci. 29, 4860 (1994).Google Scholar
7.Unruh, K. M., Sheehan, J. F., Huber, T. E., and Huber, C. A., Nanostr. Mater. 3, 425 (1993).Google Scholar
8.Ohashi, T., Kuroda, K., and Saka, H., Philos. Mag. B 65, 1041 (1992).Google Scholar
9.Sasaki, K. and Saka, H., Philos. Mag. A 63, 1207 (1991).CrossRefGoogle Scholar
10.Saka, H., Nishikawa, Y., and Imura, T., Philos. Mag. A 57, 895 (1988).Google Scholar
11.Zhang, D. L. and Cantor, B., Acta Metall. Mater. 39, 1595 (1991).CrossRefGoogle Scholar
12.Gråbaek, L., Bohr, J., Johnson, E., Sarholt-Kristensen, L., and Andersen, H. H., Phys. Rev. Lett. 64, 934 (1990).CrossRefGoogle Scholar
13.Cahn, R. W., Nature (London) 323, 668 (1986).Google Scholar
14.Sheng, H. W., Xu, J., Sun, X. K., Lu, K., and Hu, Z. Q., Nanostr. Mater. 5, 417 (1995).CrossRefGoogle Scholar
15.Sheng, H. W., Ren, G., Peng, L. M., Hu, Z. Q., and Lu, K., unpublished work.Google Scholar
16.Sheng, H. W., Ren, G., Peng, L. M., Hu, Z. Q., and Lu, K., Philos. Mag. Lett. 73, 179 (1996).Google Scholar
17.Allen, G. L., Gile, W. W., and Jesser, W. A., Acta Metall. 28, 1695 (1980).Google Scholar
18.Malhotra, A. K. and Van Aken, D. C., Philos. Mag. A 71, 949 (1995).Google Scholar
19.Couchman, P. R. and Jesser, W. A., Philos. Mag. 35, 787 (1977).Google Scholar
20.Däges, J., Gleiter, H., and Perepezko, J. H., Phys. Lett. 119, 79 (1986).Google Scholar
21.Spiller, G. D. T., Philos. Mag. 46, 535 (1982).Google Scholar
22.Shi, F. G., J. Mater. Res. 9, 1307 (1994).CrossRefGoogle Scholar
23.Lindemann, F. A., Z. Phys. 11, 609 (1910).Google Scholar