Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T13:16:21.210Z Has data issue: false hasContentIssue false

Entropy-driven loss of gas phase group V species from gold/III-V compound semiconductor systems

Published online by Cambridge University Press:  31 January 2011

John H. Pugh
Affiliation:
Department of Chemistry and Biochemistry and Solid State Science Center, University of California, Los Angeles, California 90024
R. Stanley Williams
Affiliation:
Department of Chemistry and Biochemistry and Solid State Science Center, University of California, Los Angeles, California 90024
Get access

Abstract

Temperature-dependent chemical interactions between Au and nine III-V compound semiconductors (III = Al,Ga,In and V = P,As,Sb) have been calculated using bulk thermodynamic properties. Enthalpic considerations alone are insufficient to predict metal/ compound semiconductor reactivities. The entropy of vaporization of the group V elements is shown to be an extremely important driving force for chemical reactions involving the III-V's, since it enables several endothermic reactions to occur spontaneously under certain temperature and pressure conditions. Plots of either Gibbs' free energies of reaction or equilibrium vapor pressure of the group V element versus temperature are used to predict critical reaction temperatures for each of the systems studied. These plots agree extremely well with previous experimental observations of thin film reactions of Au on GaAs.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Brillson, L. J., Phys. Rev. Lett. 40, 260 (1978); Thin Solid Films 89, 461 (1982).CrossRefGoogle Scholar
2Yoshiee, T., Bauer, C. L., and Milnes, A. G., Thin Solid Films 111, 149 (1984).Google Scholar
3McGilp, J. F., J. Phys. C 17, 2249 (1984).CrossRefGoogle Scholar
4Williams, R. H., McKinley, A., Hughes, G. J., Humphreys, T. P., and Maani, C., J. Vac. Sci. Technol. B 2, 561 (1984).CrossRefGoogle Scholar
5Lewis, G. N. and Randall, M., Thermodynamics, revised by Pitzer, K. S. and Brewer, L. (McGraw-Hill, New York, 1961), pp. 142173, 663.Google Scholar
6Arthur, J. R., Surface Sci. 43, 449 (1974).CrossRefGoogle Scholar
7Gokcen, N. A., Thermodynamics (Techscience, Hawthorne, CA, 1975), pp. 85194.Google Scholar
8Loebel, R., CRC Handbook of Chemistry and Physics, edited by Weast, R. C. (CRC, Boca Raton, FL, 1980).Google Scholar
9Wagman, D. D., Evans, W. H., Parker, V. B., Halow, I., Bailey, S. M., and Schumm, R. H., National Bureau of Standards Technical Notes 270-3, 4, 8 (1968-1981).Google Scholar
10Stull, D. R., Thermodynamic Properties of the Elements (American Chemical Society, Washington, DC, 1956).Google Scholar
11Numerical Data and Functional Relationships in Science and Technology: New series: Group III, Crystal and Solid State Physics: Volume 17, Semiconductors: Subvolume a, Physics of Group IV Element and III-V Compounds, edited by Madelung, O. (Springer-Verlag, Berlin, New York, 1982); the ΩH values were originally reported in S. Martosudirdjo and J. N. Pratt, Thermochim. Acta 10,23 (1974).Google Scholar
12Abbasov, A. S., Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Mat. Nauk 3-4, 48 (1967).Google Scholar
13Thurmond, C. D., J. Phys. Chem. Solids 26, 785 (1965).CrossRefGoogle Scholar
14Predel, B. and Ruge, H., Z. Metallkd. 63, 59 (1972).Google Scholar
15Kubaschewski, O. and Evans, E. LL., Metallurgical Thermochemistry (Pergamon, London, 1958), p. 183.Google Scholar
16Predel, B. and Stein, D. W., Acta Metall. 20, 681 (1972).Google Scholar
17Rayne, J. A., Phys. Lett. 7, 114 (1963).CrossRefGoogle Scholar
18Wallbrecht, P. C., Thermochimica Acta 48, 69 (1981).CrossRefGoogle Scholar
19Barin, I., Thermochemical Properties of Inorganic Substances, with supplement (Springer, Berlin, 1977).CrossRefGoogle Scholar
20Gopal, E. S. R., Specific Heats at Low Temperatures (Plenum, New York, 1966).CrossRefGoogle Scholar
21Lupis, C. H. P., Chemical Thermodynamics of Materials (North-Holland, New York, 1983), pp. 2123.Google Scholar
22Phillips, J. C. and Vechten, J. A. Van, Phys. Rev. El 2, 2147 (1970).Google Scholar
23Szigethy, D., Mojzes, I., and Sebestyen, T., Int. J. Mass Spectrom. Ion Phys. 52, 117 (1983).CrossRefGoogle Scholar
24Sebestyen, T., Mojzes, I., and Szigethy, D., Electron. Lett. 16, 504 (1980).Google Scholar
25Mojzes, I., Sebestyen, T., and Szigethy, D., Solid-State Electron. 25, 449 (1982).CrossRefGoogle Scholar
26Sebestyen, T., Menyhard, M., and Szigethy, D., Electron. Lett. 12, 96 (1976).CrossRefGoogle Scholar
27Kinsbron, E., Gallagher, P. K., and English, A. T., Solid-State Electron. 22, 517 (1979).Google Scholar
28Leung, S., Wong, L. K., Chung, D. D. L., and Milnes, A. G., J. Electro-chem. Soc. 130, 462 (1983).CrossRefGoogle Scholar
29Gallaher, P. K. and Chu, S. N. G., J. Phys. Chem. 86, 3246 (1982).Google Scholar
30Petro, W. G., Kendelewicz, T., Babalola, I. A., Lindau, I., and Spicer, W. E., J. Vac. Sci. Technol. A 2, 835 (1984).CrossRefGoogle Scholar