Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T18:50:23.110Z Has data issue: false hasContentIssue false

Enthalpy of formation of the cubic fluorite phase in the ceria–zirconia system

Published online by Cambridge University Press:  31 January 2011

Theresa A. Lee
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Christopher R. Stanek
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Kenneth J. McClellan
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Jeremy N. Mitchell
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Alexandra Navrotsky*
Affiliation:
Peter A. Rock Thermochemistry Laboratory and Nanomaterials in the Environment, Agriculture, and Technology Organized Research Unit (NEAT ORU), University of California at Davis, Davis, California 95646-8779
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The enthalpy of formation of cubic ceria–zirconia solid solutions (c-Ce(1−x)ZrxO2, 0.05 ⩽ x ⩽ 0.75) at 25 °C with respect to monoclinic zirconia (m-ZrO2) and cubic ceria (c-CeO2) has been measured by high-temperature oxide melt solution calorimetry. In contrast to fluorite solid solutions containing trivalent oxides (e.g., yttria–zirconia), mixing in c-Ce1−xZrxO2 shows moderate positive deviation from ideality. Evaluating the data within the framework of a regular solution model, the interaction parameter, Ω, is +51.0 ± 8.0 kJ/mol. The introduction of undersized Zr into CeO2 severely distorts and destabilizes the oxygen sublattice. Destabilization of c-Ce1−xZrxO2 may be relieved by reduction or clustering. A stable ordered compound in the CeO2–ZrO2 system is thermodynamically unlikely.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Duran, P., Gonzalez, M., Moure, C., Jurado, J.R.Pascual, C.: A new tentative phase equilibrium phase diagram for the ZrO2–CeO2 system in air. J. Mater. Sci. 25, 5001 1990CrossRefGoogle Scholar
2Serizawa, H., Nakajima, K., Ari, Y., Yamashita, T., Kuramoto, K., Kinoshita, H., Yamanaka, S., Uno, M.Kurosaki, K.: Re-evaluation of the phase relationship between plutonium and zirconium dioxides. Prog. Nucl. Energy 38, 237 2001CrossRefGoogle Scholar
3Stevens, R.: An Introduction to Zirconia Magnesium Electron Twickenham, UK 1986Google Scholar
4Mogensen, M., Sammes, N.M.Tompsett, G.A.: Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129, 63 2000CrossRefGoogle Scholar
5Trovarelli, A.: Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. 38, 439 1996CrossRefGoogle Scholar
6Trovarelli, A., de Leitenberg, C., Boaro, M.Dolcetti, G.: The utilization of ceria in industrial catalysis. Catal. Today 50, 353 1999CrossRefGoogle Scholar
7Tompsett, G.A., Sammes, N.M.Yamamoto, O.: Ceria–yttria-stabilized zirconia composite ceramic systems for applications as low-temperature electrolytes. J. Am. Ceram. Soc. 80, 3181 1997CrossRefGoogle Scholar
8Steele, C.H.Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345 2001CrossRefGoogle ScholarPubMed
9Park, S.D., Vohs, J.M.Gort, R.J.: Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265 2000CrossRefGoogle Scholar
10Murray, E.P., Tsai, T.Barnett, S.A.: A direct-methane fuel cell with a ceria-based anode. Nature 400, 649 1999CrossRefGoogle Scholar
11Putnam, R.L., Navrotsky, A., Cordfunke, E.H.P.Huntelaar, M.E.: Thermodynamics of formation of two cerium aluminum oxides, CeAlO3(s) and CeAl12O19.918(s), and cerium sesquioxide, Ce2O3(s) at T = 298.15 K. J. Chem. Thermodynamics 32, 911 2000CrossRefGoogle Scholar
12Diwell, A.F., Rajaram, R.R., Shaw, H.A.Truex, T.J.: The role of ceria in 3-way catalysts. Stud. Surf. Sci. Catal. 71, 139 1991CrossRefGoogle Scholar
13Numan, J.G., Robota, H.J., Cohn, M.J.Bradley, S.A.: Physicochemical properties of Ce-containing 3-way catalysts and the effect of Ce on catalyst activity. J. Catal. 133, 309 1992CrossRefGoogle Scholar
14Akie, H., Muromura, T., Takano, H.Matsuura, S.: A new fuel material for once-through weapons plutonium burning. Nucl. Technol. 107, 182 1994CrossRefGoogle Scholar
15Paratte, J.M.Chawla, R.: On the physics feasibility of LWR plutonium fuels without uranium. Ann. Nucl. Energy 22, 471 1995CrossRefGoogle Scholar
16Lombardi, C.Mazzola, A.: Exploiting the plutonium stockpiles in PWRs by using inert matrix fuel. Ann. Nucl. Energy 23, 1117 1996CrossRefGoogle Scholar
17Degueldre, C.Paratte, J.M.: Concepts for an inert matrix fuel, an overview. J. Nucl. Mater. 274, 1 1999CrossRefGoogle Scholar
18Vettraino, F., Mangani, G., Torretta, T. La, Marmo, E., Coelli, S., Luzzi, L., Ossi, P.Zappa, G.: Preliminary fabrication and characterization of inert matrix and thoria fuels for plutonium disposition in light water reactors. J. Nucl. Mater. 274, 23 1999CrossRefGoogle Scholar
19Sickafus, K.E., Hanrhan, R.J., McClellan, K.J., Mitchell, J.N., Wetteland, C.J., Butt, D.P., Chodak, P., Ramsey, K.B., Blair, T.H., Chidestear, K., Matzke, H.J., Yasuda, K., Verrall, R.A.Yu, N.: Burn and bury option for plutonium. Am. Ceram. Soc. Bull. 68, 69 1999Google Scholar
20Zamoryanskaya, M.V.Burakov, B.E.: Feasibility limits in using cerium as a surrogate for plutonium incorporation in zircon, zirconia and pyrochlore in Scientific Basis for Nuclear Waste Management XXIV, edited by K.P. Hart and G.R. Lumpkin, (Mater. Res. Soc. Symp. Proc. 663, Warrendale, PA, 2001), 301CrossRefGoogle Scholar
21Akashi, T., Matsumi, K., Okada, T.Mizutani, T.: Preparation of ferrite single crystals by new floating zone technique. IEEE Trans. Magn. 3, 285 1969CrossRefGoogle Scholar
22Shindo, I., Kimizuka, N.Kimura, S.: Growth of YFe2O4 single crystals by floating zone method. Mat. Res. Bull. 11, 637 1976CrossRefGoogle Scholar
23Zhu, H.Y.Hirata, T.: Coloration in ceria-doped zirconia induced by reduction heat treatments. Solid State Comm. 84, 527 1992CrossRefGoogle Scholar
24Navrotsky, A.: Progress and new directions in high temperature calorimetry revisited. Phys. Chem. Miner. 24, 222 1997CrossRefGoogle Scholar
25McHale, J.M., Kowach, G.R., Navrotsky, A.DiSalvo, F.J.: Thermochemistry of metal nitrides in the Ca/Zn/N system. Chem. Eur. J. 2, 1514 1996CrossRefGoogle Scholar
26Dutta, G., Waghmare, U.V., Baidya, T., Hegde, M.S., Priolkar, K.R.Sarode, P.R.: Reducibility of Ce1−xZrxO2: Origin of enhanced oxygen storage capacity. Catal. Lett. 108, 165 2006CrossRefGoogle Scholar
27Kim, T., Vohs, J.M.Gorte, R.J.: Thermodynamic investigation of the redox properties of ceria-zirconia solid solutions. Ind. Eng. Chem. Res. 45, 5561 2006CrossRefGoogle Scholar
28Helean, K.B.Navrotsky, A.: Oxide melt solution of rare earth oxides: Techniques, problems, cross-checks, successes. J. Therm. Anal. Calorim. 69, 751 2002CrossRefGoogle Scholar
29Navrotsky, A., Benoist, L.Lefebvre, H.: Direct calorimetric measurement of enthalpies of phase transitions at 2000 degrees–2400 degrees C in yttria and zirconia. J. Am. Ceram. Soc. 88, 2942 2005Google Scholar
30Lee, T.A., Navrotsky, A.Molodetsky, I.: Enthalpy of formation of cubic yttria-stabilized zirconia. J. Mater. Res. 18, 908 2003CrossRefGoogle Scholar
31Lee, T.A.Navrotsky, A.: Enthalpy of formation of cubic yttria-stabilized hafnia. J. Mater. Res. 19, 1855 2004CrossRefGoogle Scholar
32Du, Y., Yashima, M., Koura, T., Kakihana, M.Yoshimura, M.: Thermodynamic evaluation of the ZrO2–CeO2 system. Scripta Metall. Mater. 31, 327 1994CrossRefGoogle Scholar
33Du, Y., Jin, Z.Huang, P.: Thermodynamic calculation of the zirconia-calcia system. J. Am. Ceram. Soc. 75, 3040 1992CrossRefGoogle Scholar
34Longo, V.Minichel, D.: X-ray characterization of Ce2Zr3O10. J. Am. Ceram. Soc. 56, 600 1973CrossRefGoogle Scholar
35Pepin, J.G.Vance, E.R.: Non-confirmation of a Ce2Zr3O10 compound. Phys. Status Solidi A 67, K167 1981CrossRefGoogle Scholar
36Tani, E., Yoshimura, M.Somiya, S.: Revised phase diagram of the system ZrO2–CeO2 below 1400 degree C. J. Am. Ceram. Soc. 66, 506 1983CrossRefGoogle Scholar
37Yashima, M., Takashina, H., Kakihana, M.Yoshimura, M.: Low-temperature phase equilibria by the flux method and the metastable-stable phase diagram in the ZrO2–CeO2 system. J. Am. Ceram. Soc. 77, 1869 1994CrossRefGoogle Scholar
38Goff, J.P., Hayes, W., Hull, S., Hutchings, M.T.Clausen, K.N.: Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys. Rev. B 59, 14202 1999CrossRefGoogle Scholar
39Chen, W.Q., Lee, T.A.Navrotsky, A.: Enthalpy of formation of yttria-doped ceria. J. Mater. Res. 20, 144 2005CrossRefGoogle Scholar
40Chen, W.Q.Navrotsky, A.: Thermochemical study of trivalent-doped ceria systems: CeO2–M O1.5 (M = La, Gd, and Y). J. Mater. Res. 21, 3242 2006CrossRefGoogle Scholar
41Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 1976CrossRefGoogle Scholar
42Li, P., Chen, I.W.Penner-Hahn, J.E.: X-ray-absorption studies of zirconia polymorphs II: Effect of Y2O3 dopant on ZrO2 structure. Phys. Rev. B 48, 10074 1993CrossRefGoogle ScholarPubMed
43Murota, T., Hasegawa, T., Aozasa, S., Matsui, H.Motoyama, M.: Production method of cerium oxide with high storage capacity of oxygen and its mechanism. J. Alloys Compd. 193, 298 1993CrossRefGoogle Scholar
44Zamar, F., Trovarelli, A., Deleitenburg, C.Dolcetti, G.: CeO2-based solid-solutions with the fluorite structure as novel and effective catalysts for methane combustion. J. Chem. Soc. Chem. Comm. 9, 965 1995CrossRefGoogle Scholar
45Balducci, G., Fornasiero, P., Dimonte, R., Kaspar, J., Meriani, S.Graziani, M.: An unusual promotion of the redox behavior of CeO2–ZrO2 solid solutions upon sintering at high temperatures. Catal. Lett. 33, 193 1995CrossRefGoogle Scholar
46Vlaic, G., Fornasiero, P., Geremia, S., Kaspar, J.Graziani, M.: Relationship between the zirconia-promoted reduction in the RH-loaded Ce0.5 Zr0.5O2 mixed oxide and the Zr–O local structure. J. Catal. 168, 386 1997CrossRefGoogle Scholar
47Nagai, Y., Yamamoto, T., Tanaka, T., Yoshida, S., Nonaka, T., Okamoto, T., Suda, A.Sugiura, M.: X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr = 1). Catal. Today 74, 225 2002CrossRefGoogle Scholar
48Liu, G., Rodriguez, J.A., Hrbek, J., Dvorak, J.Peden, C.H.F.: Electronic and chemical properties of Ce0.8Zr0.2O2 (1 1 1) surfaces: Photoemission, XANES, density-functional, and NO2 adsorption studies. J. Phys. Chem. B 105, 7762 2001CrossRefGoogle Scholar
49Rodriguez, J.A., Hanson, J.C., Kim, J.Y., Liu, G., Iglesias-Juez, A.Fernandez-Garcia, M.: Properties of CeO2 and Ce1−xZrxO2 nanoparticles: X-ray absorption near-edge spectroscopy, density functional, and time-resolved x-ray diffraction studies. J. Phys. Chem. B 107, 3535 2003CrossRefGoogle Scholar
50Yoshimura, M.Sata, T.: Phase studies on the system ZrO2–Ce2O3 from 1350 degrees C to 1900 degrees C. Bull. Tokyo Inst. Technol. 108, 25 1972Google Scholar
51Masui, T., Ozaki, T., Adachi, G.Y., Kang, Z.Eyring, L.: A new ceria-zirconia mixed oxide phase based on pyrochlore. Chem. Lett. (Jpn.) 7, 840 2000CrossRefGoogle Scholar
52Sasaki, T., Ukyo, Y., Kuroda, K., Arai, S., Muto, S.Saka, H.: Crystal structure of Ce2Zr2O7 and beta-Ce2Zr2O7.5. J. Ceram. Soc. Jpn. 112, 440 2004CrossRefGoogle Scholar
53Otsuka-Yao-Matsuo, S., Omata, T., Izu, N.Kishimoto, H.: Oxygen release behavior of CeZrO4 powders and appearance of new compounds kappa and t. J. Solid State Chem. 138, 47 1998CrossRefGoogle Scholar
54Kishimoto, H., Omata, T., Otsuka-Yao-Matsuo, S., Ueda, K., Hosono, H.Kawazoe, H.: Crystal structure of metastable kappa-CeZrO4 phase possessing an ordered arrangement of Ce and Zr ions. J. Alloys Compd. 312, 94 2000CrossRefGoogle Scholar
55Montini, T., Hickey, N., Fornasiero, P., Graziani, M., Banares, M.A., Martinez-Huerta, M.V., Alessandri, I.Depero, L.E.: Variations in the extent of pyrochlore-type cation ordering in Ce2Zr2O8: A tPR-kappa pathway to low-temperature reduction. Chem. Mater. 17, 1157 2005CrossRefGoogle Scholar
56Suda, A., Ukyo, Y., Yamamura, K., Sobukawa, H., Sasaki, T., Nagai, Y., Tanabe, T.Sugiura, M.: Effect of ordered arrangement of Ce and Zr ions on oxygen storage capacity of ceria-zirconia solid solution. J. Ceram. Soc. Jpn. 112, 586 2004CrossRefGoogle Scholar
57Conesa, J.C.: Computer modeling of local level structures in (Ce, Zr) mixed oxide. J. Phys. Chem. B 107, 8840 2003CrossRefGoogle Scholar
58Yang, Z., Woo, T.K.Hermansson, K.: Effects of Zr doping on stoichiometric and reduced ceria: A first-principles study. J. Chem. Phys. 124, 224704 2006CrossRefGoogle Scholar
59Balducci, G., Kaspar, J., Fornasiero, P., Graziani, M., Islam, M.S.Gale, J.D.: Computer simulation studies of bulk reduction and oxygen migration in CeO2–ZrO2 solid solutions. J. Phys. Chem. B 101, 1750 1997CrossRefGoogle Scholar
60Zhou, G., Shah, P.R., Kim, T., Fornasiero, P.Gorte, R.J.: Oxidation entropies and enthalpies of ceria-zirconia solid solutions. Catal. Today 123, 86 2007CrossRefGoogle Scholar
61Navrotsky, A., Simoncic, P., Yokokawa, H., Chen, W.Lee, T.: Calorimetric measurements of energetics of defect interactions in fluorite oxides. Faraday Discuss. 134, 171 2007CrossRefGoogle ScholarPubMed
62Robie, R.A.Hemingway, B.S.: Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures,Geological Survey Bulletin # 2131 United States Government Printing Office Washington, DC 1995Google Scholar